Skip to main content
Log in

Carbaryl residue concentrations, degradation, and major sinks in the Seto Inland Sea, Japan

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The fate of carbaryl in the Seto Inland Sea (west Japan) was predicted using a mass distribution model using carbaryl concentrations in river and sea water samples, degradation data, and published data. The predicted carbaryl concentrations in water in Kurose River and the Seto Inland Sea were 4.320 and 0.2134 μg/L, respectively, and the predicted concentrations in plankton, fish, and sediment were 0.4140, 2.436, and 1.851 μg/g dry weight, respectively. The carbaryl photodegradation and biodegradation rates were higher for river water (0.330 and 0.029 day−1, respectively) than sea water (0.23 and 0.001 day−1, respectively). The carbaryl photodegradation rates for river and sea water (0.33 and 0.23 day−1, respectively) were higher than the biodegradation rates (0.029 and 0.001 day−1, respectively). The hydrolysis degradation rate for carbaryl in sea water was 0.003 day−1, and the half-life was 231 days. Land (via rivers) was the main source of carbaryl to the Seto Inland Sea. The model confirmed carbaryl is distributed between sediment, plankton, and fish in the Seto Inland Sea. Degradation, loss to the Open Ocean, and sedimentation are the main carbaryl sinks in the Seto Inland Sea, accounting for 43.81, 27.90, and 17.68%, respectively, of total carbaryl inputs. Carbaryl source and sink data produced by the model could help in the management of the negative impacts of carbaryl on aquatic systems and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armbrust KL, Corsby AG (1991) Fate of carbaryl, I-naphthol, and atrazine in seawater. Pac Sci 45(3):314–320

    CAS  Google Scholar 

  • Barragan-Huerta BE, Costa-Perez C, Peralta-Cruz J, Barrera-Cortes J, Esparza-Garcıa F, Rodriguez-Vazquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegrad 59:239–244. https://doi.org/10.1016/j.ibiod.2006.11.001

    Article  CAS  Google Scholar 

  • Bazrafshan AA, Ghaedi M, Rafiee Z, Hajati S, Ostovan A (2017) Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide carbaryl from water samples: spectrophotometric determination. J Colloid Interface Sci 498:313–322. https://doi.org/10.1016/j.jcis.2017.03.076

    Article  CAS  Google Scholar 

  • Bidleman TF, Antunen LM, Falconer RL, Barrie LA, Fellin P (1995) Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange. Geophys Res Lett 22:219–222

    Article  CAS  Google Scholar 

  • Bondarenko S, Gan J, Haver DL, Kabashima JN (2004) Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environ Toxicol Chem 23:2649–2654

    Article  CAS  Google Scholar 

  • Carpenter M (1990) Hydrolysis of 14C-carbaryl in aqueous solutions buffered at pH 5, 7 and 9, vol 169-218 # 92535. Department of Pesticide Regulation, Sacramento

    Google Scholar 

  • Chapalamadugu S, Chaudhry GR (1991) Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl. Appl Environ Microbiol:744–750

  • Chapman PM, Ho KT, Munns WR, Solomon K, Weinstein MP (2002) Issues in sediment toxicity and ecological risk assessment. Mar Pollut Bull 44:271–278. https://doi.org/10.1016/S0025-326X(01)00329-0

    Article  CAS  Google Scholar 

  • Chattoraj S, Mondal NK, Das B, Roy P, Sadhukhan B (2014) Carbaryl removal from aqueous solution by Lemna major biomass using response surface methodology and artificial neural network. J Environ Chem Eng 2:1920–1928. https://doi.org/10.1016/j.jece.2014.08.011

    Article  CAS  Google Scholar 

  • Chidya RCD (2018) Occurrence, dynamics, spatio-temporal variations and risk assessment of pesticide residues in Kurose river and Seto Inland Sea. Doctoral thesis, Hiroshima University, Japan pp 98-101

  • Cullington JE, Walker A (1999) Rapid biodegradation of Diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686

    Article  CAS  Google Scholar 

  • Derbalah AS, Nakatani N, Sakugawa H (2004) Photocatalytic removal of Fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 57:635–644. https://doi.org/10.1016/j.chemosphere.2004.08.025

    Article  CAS  Google Scholar 

  • Derbalah AS, Ismail AA, Shaheen SM (2013) Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water. Pol J Chem Technol 15(3):25–34

    Article  CAS  Google Scholar 

  • Derbalah AS, Ismail AA, Hamza AM, Shaheen SM (2014) Monitoring and remediation of organochlorine residues in water. Water Environ Res 86(7):584–593

    Article  CAS  Google Scholar 

  • Derbalah AS, Ismail AA, Shaheen SM (2016) The presence of organophosphorus pesticides in wastewater and its remediation technologies. Environ Eng Manag J 15(8):1777–1787. https://doi.org/10.2478/pjct-2013-0040

    Article  CAS  Google Scholar 

  • Diamond ML, Priemer DA, Law NL (2001) Developing a multimedia model of chemical dynamics in an urban area. Chemosphere 44:1655–1667

    Article  CAS  Google Scholar 

  • Doong R, Chang W (1998) Photoassisted iron compound catalytic degradation of organophosphorous pesticides with hydrogen peroxide. Chemosphere 37:2563–2572

    Article  CAS  Google Scholar 

  • EMECS (Environmental Conservation of the Seto Inland Sea) (2008). Outline of the Seto Inland Sea. Available online at: http://www.emecs.or.jp/englishver2/publication/Seto_Inland_Sea/index.html

  • EPA (2004) Reregistration eligibility decision for carbaryl. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts-Jr JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New York

    Google Scholar 

  • Hamada M, Matar A, Bashir A (2015) Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Brazilian J of Microbiol 46(4): 1087–1091. https://doi.org/10.1590/S1517-838246420150177S

  • Haag RW, Hoigné J (1986) Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters. Environ Sci Technol 20:341–348

    Article  CAS  Google Scholar 

  • Hobbie JE (1988) A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol Oceanogr 33:750–764

    CAS  Google Scholar 

  • Hoshika A, Shiozawa T, Kawana K, Tanimoto T (1991) Heavy metal pollution in sediment from the Seto Inland Sea. Jpn Mar Pollut Bull 23:101–105

    Article  CAS  Google Scholar 

  • Imai I, Yamaguchi M, Hori Y (2006) Eutrophication and occurences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res 1:71–84

    Article  Google Scholar 

  • Kaonga CC, Takeda K, Sakugawa H (2015) Antifouling agents and Fenitrothion contamination in seawater, sediment, plankton, fish and selected marine animals from the Seto Inland Sea, Japan. Geochem J 49:23–37. https://doi.org/10.2343/geochemj.2.0327

    Article  CAS  Google Scholar 

  • Kaonga CC, Takeda K, Sakugawa H (2016) Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclosed sea, Japan. Chemosphere 145:256–264. https://doi.org/10.1016/j.chemosphere.2015.11.100

    Article  CAS  Google Scholar 

  • Katagi T (2018) Direct photolysis mechanism of pesticides in water. J Pestic Sci 43:57–72

    Article  CAS  Google Scholar 

  • Keller AA (2007) Steady state and residence time. School of Environmental Science and Management, University of California, Santa Barbara. Available online at: http://www2.bren.ucsb.edu/∼keller/courses/esm202/SteadyState&ResidenceTime.pdf

  • Kodama T, Kuwatsuka S (1980) Factors for the persistence of parathion, methyl-parathion and fenitrothion in seawater. J Pestic Sci 5:351–355 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Kronvang B, Laubel A, Larsen SE, Friberg N (2003) Pesticides and heavy metals in Danish streambed sediment. The interactions between sediments and water. Dev Hydrobiol 169:93–101

    Article  Google Scholar 

  • Kuniaki K, Takashi A, Kikuo O, Akiko T (2005) Multiresidue determination of pesticides in sediment by ultrasonically assisted extraction and gas chromatography/mass spectrometry. J AOAC Inter 88:1440–1145

    Article  Google Scholar 

  • Lacorte S, Barcelo D (1994) Rapid degradation of fenitrothion in estuarine waters. Environ Sci Technol 28:1159–1163

    Article  CAS  Google Scholar 

  • Lee P (2005) Concentrations of pesticides in Sacramento Metropolitan area rainwater during the 2004 orchard dormant spray season. Technical report by staff of the California Regional Water Quality Control Board, Central Valley Region, USA

  • Looser R, Froescheis O, Cailliet GM, Jarman WM, Ballschmiter K (2000) The deep-sea as a final global sink of semivolatile persistent organic pollutants? Part II: organochlorine pesticides in surface and deep-sea dwelling fish of the North and South Atlantic and the Monterey Bay Canyon (California). Chemosphere 40:661–670. https://doi.org/10.1016/S0045-6535(99)00462-2

    Article  CAS  Google Scholar 

  • Mackay D, Webster E, Cousins I, Cahill T, Foster K, Gouin T (2001) An introduction to multimedia models: a final report prepared as a background paper for OECD Workshop Ottawa, October 2001 (2001) CEMC report no. 200102. Available online at: http://www.trentu.ca/academic/aminss/envmodel/CEMC200102.pdf

  • MAFF (Ministry of Agriculture, Forestry and Fisheries) Japan (2011) Seto Inland Sea Environmental Protection Work. Available online at: http://www.env.go.jp/council/former2013/11seto/y111-02/mat02_5-1.pdf (In Japanese)

  • Miller PL, Chin Y (2002) Photoinduced degradation of carbaryl in a wetland surface water. J Agric Food Chem 50:6758–6765. https://doi.org/10.1021/jf025545m

    Article  CAS  Google Scholar 

  • Monsen NE, Cloem JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time and age transport time scales. Limnol Oceanogr 47:1545–1553. https://doi.org/10.4319/lo.2002.47.5.1545

    Article  Google Scholar 

  • Mopper K, Zhou X (1990) Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Sci 250:661–664

    Article  CAS  Google Scholar 

  • NIES (National Institute of Environmental Studies) (2018) Japan, 2012NIES (National Institute of Environmental Studies) Japan Agricultural Chemicals Database (2018) Available online at: http://db-out.nies.go.jp/kis-plus/index_3.html

  • Olasehinde EF, Ogunsuyi HO, Sakugawa H (2012) Determination of hydroxyl radical in Seto Inland Sea and its potential to degrade Irgarol IOSR. J Appl Chem 1(5):07–14. https://doi.org/10.9790/5736-0150714

    Article  Google Scholar 

  • Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van-Dover CL (2011) Man and the last great wilderness: human impact on the deep sea. PlOS-One 6:1–25. https://doi.org/10.1371/journal.pone.0022588

    Article  CAS  Google Scholar 

  • Roberts TR, Hutson DH (1999) The agrochemicals handbook; the Royal Society of Chemistry, Information Services. MPG Books, Bodmin

    Google Scholar 

  • Sabatier P, Poulenard J, Fanget B, Reyss J, Develle A, Wilhelm B, Ployon E, Pignol C, Naffrechoux E, Dorioz J, Montuelle B, Arnaud F (2014) Long-term relationship among pesticide applications, mobility and soil erosion in a vineyard watershed. PNAS 111:15647–15652. https://doi.org/10.1073/pnas.1411512111

    Article  CAS  Google Scholar 

  • Senthilkumar K, Kannan K, Subramanian A, Tanabe S (2001) Accumulation of organochlorine pesticides and polychlorinated biphenyls. Environ Sci Pollut Res 8:35–47. https://doi.org/10.1007/BF02987293

    Article  CAS  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40. https://doi.org/10.1007/s12088-008-0004-7

    Article  Google Scholar 

  • Stemmler I, Lammel G (2009) Cycling of DDT in the global environment 1950–2002: world ocean returns the pollutant. Geophys Res Lett 36:1–15

    Article  Google Scholar 

  • Sudo M, Kunimatsu T, Okubo T (2002) Concentration and loading of pesticide residues in Lake Biwa basin (Japan). Water Res 36:315–329

    Article  CAS  Google Scholar 

  • Takeda K, Takedoi H, Yamaji S, Ohta K, Sakugawa H (2004) Determination of hydroxyl radical photoproduction rates in natural waters. Anal Sci 20:153–158. https://doi.org/10.2116/analsci.20.153

    Article  CAS  Google Scholar 

  • Takeda K, Katoh S, Mitsui Y, Nakano S, Nakatani N, Sakugawa H (2014) Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors. Sci Total Environ 493:454–462. https://doi.org/10.1016/j.scitotenv.2014.05.126

    Article  CAS  Google Scholar 

  • Takeoka H (1984) Fundamental concepts of exchange and transport time scales in a coastal sea. Cont Shelf Res 3:311–326

    Article  Google Scholar 

  • Thuyet DO, Watanabe H, Ok J (2013) Effect of pH on the degradation of imidacloprid and fipronil in paddy water. J Pestic Sci 38(4):223–227. https://doi.org/10.1584/jpestics.D12-080

    Article  CAS  Google Scholar 

  • Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381–1389. https://doi.org/10.1002/etc.5620200701

    Article  CAS  Google Scholar 

  • Toose L, Woodfine DG, MacLeod M, Mackay D, Gouin J (2004) BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic. Environ Pollut 128:233–240. https://doi.org/10.1016/j.envpol.2003.08.037

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29:2333–2338

    Article  CAS  Google Scholar 

  • Yamazaki M, Uejima H (2005) World largest scale analog simulator (Seto Inland Sea large sized hydrological model) history and results. Nihon Engan-iki Gakkaishi 18:33–35 (In Japanese)

    Google Scholar 

  • Zhu SH, Wu HL, Xia AL, Han QJ, Zhang Y, Yu RQ (2008) Quantitative analysis of hydrolysis of carbaryl in tap water and river by excitation-emission matrix fluorescence coupled with second-order calibration. Talanta 74(5):1579–1585. https://doi.org/10.1016/j.talanta.2007.10.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the JSPS for funding an invitation research fellowship to Professor Aly Derbalah at Hiroshima University, Japan. We thank Natalie Kim, PhD, and Gareth Thomas, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. We are also grateful for the support of our laboratory members throughout the study period.

Funding

This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number 16KT0149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sakugawa.

Additional information

Responsible editor: Christian Gagnon

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbalah, A., Chidya, R., Kaonga, C. et al. Carbaryl residue concentrations, degradation, and major sinks in the Seto Inland Sea, Japan. Environ Sci Pollut Res 27, 14668–14678 (2020). https://doi.org/10.1007/s11356-020-08010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08010-0

Keywords

Navigation