Skip to main content
Log in

Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO2 nanocomposites immobilized on polystyrene cubes

  • Affordable Strategies for Environment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, PANI-TiO2 nanocomposites have been used in suspended and immobilized form for photocatalytic degradation of Acid Yellow 17 (AY-17) dye under visible light. PANI-TiO2 nanocomposites were immobilized in polystyrene cubes to form PANI-TiO2 @ polystyrene cubes. The nanocomposites were found to be visible light active both in suspended and immobilized form. PANI-TiO2 nanocomposite with 13% TiO2 loading was found to be the optimum in terms of maximum degradation of AY-17. The efficiency of floating bed photoreactor (FBR) operated in liquid recycle mode using PANI-TiO2 @ polystyrene cubes was studied. In this reactor, around 89% degradation of 1 L of AY-17 with an initial concentration of 10 mg/L could be achieved with 2.83 g/L per pass of immobilized catalyst. The FBR operated with PANI-TiO2 @ polystyrene cubes has exhibited good performance as a photocatalytic reactor and may be recommended over other conventional photo reactors for treatment of wastewater contaminated with synthetic dyes. The kinetics of degradation of AY-17 by photocatalysis under visible light with suspended PANI-TiO2 and PANI-TiO2 @ polystyrene cubes followed first-order kinetics. The values of apparent kinetic parameter for degradation by immobilized photocatalysts are lower than the corresponding kinetic parameter for suspended photocatalysts. It confirms the existence of diffusional limitations in photocatalysis by PANI-TiO2 @polystyrene cubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bouazza N, Ouzzine M, Lillo-Ródenas MA et al (2009) TiO2 nanotubes and CNT-TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl Catal B Environ 92:377–383

    CAS  Google Scholar 

  • Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B Environ 17:25–36

    CAS  Google Scholar 

  • Chen C, Liu J, Liu P, Yu B (2011) Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts. Adv in Chem Eng Sci 1:9–14

    CAS  Google Scholar 

  • Ciambelli P, Sannino DV, Vaiano V, Mazzei RS (2009, 2009) Improved performances of a fluidized bed photoreactor by a microscale illumination system. Int J Photoenergy, Article ID:709365. https://doi.org/10.1155/2009/709365

  • Dijkstra MFJ, Buwalda H, de Jong AWF, Michorius A, Winkelman JGM, Beenackers AACM (2001) Experimental comparison of three reactor designs for photocatalytic water purification. Chem Eng Sci 56:547–555

    CAS  Google Scholar 

  • El-Kalliny AS, Ahmed SF, Rietveld LC, Appel PW (2014) Immobilized photocatalyst on stainless steel woven meshes assuring efficient light distribution in a solar reactor. Drink Water Eng Sci 7:41–52

    CAS  Google Scholar 

  • Faramarzpour M, Vossoughi M, Borghei M (2009) Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chem Eng J 146:79–85

    CAS  Google Scholar 

  • Feitz AJ, Boyden BH, Waite TD (2000) Evaluation of two solar pilot scale fixed-bed photocatalytic reactors. Water Res 34(16):3927–3932

  • Gadiyar C, Boruah B, Mascarenhas C, Shetty KV (2013) Immobilized Nano TiO2 for Photocatalysis of acid Yellow-17 dye in fluidized bed reactor. Int J Curr Eng Technol., ISSN 2277–4106:84–87

  • Ganesan R, Gedanken A (2008) Organic-inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems. Nanotechnology 19:435709

    Google Scholar 

  • Ghasemi B, Anvaripour B, Jorfi S, Jaafarzadeh N (2016) Enhanced photocatalytic degradation and mineralization of furfural using UVC/TiO2/GAC composite in aqueous solution. Int J Photoenergy 2016:2782607. https://doi.org/10.1155/2016/2782607

    Article  CAS  Google Scholar 

  • Gilja V, Novaković K, Travas-Sejdic J, Hrnjak-Murgić Z, Roković MK, Žic M (2017) Stability and synergistic effect of Polyaniline/TiO2 photocatalysts in degradation of Azo dye in wastewater. Nanomaterials 7(12):412

    Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    CAS  Google Scholar 

  • Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    CAS  Google Scholar 

  • Hsien YH, Chang CF, Chen YH, Cheng SF (2001) Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Appl Catal B-Environ 31:241–249

    CAS  Google Scholar 

  • Huda A, Suman PH, Torquato DM, Bianca F, Silva CT, Handoko F, Gulo MVB, Orlandi ZMO (2019) Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using Sn3O4 flower-like thin films supported on Ti substrate (Sn3O4/TiO2/Ti). J Photochem Photobiol A Chem 376:196–205

    CAS  Google Scholar 

  • Hung CH, Yuan C (2000) Reduction of Azo-dye via TiO2–photocatalysis. J Chin Inst Environ Eng 10:209–216

    CAS  Google Scholar 

  • Hupka J, Zaleska A, Kowalska E, Bokotko R, Tyszkiewicz H, Biziuk M (1999) Photocatalytic degradation of almost non-soluble organics in gas-sparged reactor. Proceedings of the EF Conference Environmental Technology for Oil Pollution. Jurata, Poland, August 29-September 3

  • Hupka J, Zaleska A, Janczarek M, Kowalska E, Gorska P, Aranowski R (2005) UV/VIS light-enhanced photocatalysis for water treatment and protection. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring,protection and remediation. Nato Science Series: IV. Earth and Environmental Sciences. Springer, Berlin, pp 151–166

    Google Scholar 

  • Jumat NA, Wai PS, Ching JJ, Basirun WJ (2017) Synthesis of polyaniline-TiO2 Nanocomposites and their application in photocatalytic degradation. Polym Polym Compos 25(7):507–513

    CAS  Google Scholar 

  • Kalikeri S, Kamath N, Gadgil DJ, Shetty Kodialbail V (2018) Visible light-induced photocatalytic degradation of reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis. Environ Sci Pollut Res 25:3731–3744

    CAS  Google Scholar 

  • Kamble SP, Sawant SB, Pangarkar VG (2003) Batch and continuous photocatalytic degradation of benzenesulfonic acid using concentrated solar radiation. Ind Eng Chem Res 42:6705–6713

    CAS  Google Scholar 

  • Khan J, Sayed M, Ali F, Khan HM (2018) Removal of Acid Yellow 17 dye by fenton oxidation process. Z Phys Chem 232:507–525

    CAS  Google Scholar 

  • Khan J, Tariq MM, Muhammad M, Mehmood MH, Ullah I, Raziq A, Akbar F, Saqib M, Rahim A, Niaz A (2019) Kinetic and thermodynamic study of oxidative degradation of acid yellow 17 dye by Fenton-like process: effect of HCO3−, CO32−, Cl− and SO42− on dye degradation. Bull Chem Soc Ethiop 33(2):243–254

    Google Scholar 

  • Khanna A, Shetty KV (2013) Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2core-shell structured nanoparticles. Environ Sci Pollut Res 20:5692–5707

    CAS  Google Scholar 

  • Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of reactive blue 220 (RB-220) dye with highly efficient Ag@TiO2core-shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76

    CAS  Google Scholar 

  • Khanna A, Shetty KV (2015) Solar light-driven photocatalytic degradation of anthraquinone dye-contaminated water by engineered Ag@ TiO2 core–shell nanoparticles. Desalin Water Treat 54(3):744–757

    CAS  Google Scholar 

  • Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328:8–26

    CAS  Google Scholar 

  • Kimura I, Kase T, Taguchi Y, Tanaka M (2003) Preparation of titania/silica composite microspheres by sol-gel process in reverse suspension. Mater Res Bull 38:585–597

    CAS  Google Scholar 

  • Li L, Li Y, Xu H, Zhang W (2015) Novel floating TiO2 photocatalysts for polluted water decontamination based on polyurethane composite foam. Sep Sci Technol 50:164–173

    CAS  Google Scholar 

  • Linzhang G, Shengying W, Wu Y, Guohu Z, Lili B, Li S (2007) Preparation and photocatalytic activity of PANI/Ti02 composite film. Rare Metals 26(1):1–7

    Google Scholar 

  • Madjene F, Yeddou-Mezenner N (2018) Design and optimization of a new photocatalytic reactor with immobilized ZnO for water purification. Sep Sci Technol 53(2):364–373

    CAS  Google Scholar 

  • Mai FD, Lu CS, Wu CW, Huang CH, Chen JY, Chen CC (2008) Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2. Sep Purif Technol 62:423–436

    CAS  Google Scholar 

  • Mavuso MA (2014). Photodegradation of reactive Black-5 dye (Rb-5) in wastewater using annular photoreactor. Proceedings of International Conference on Chemical, Integrated Waste Management & Environmental Engineering. Link: https://pdfs.semanticscholar.org/d13d/e5522f9468fcdb5ab7c59d9581fa68f459a0.pdf. Accessed 15 Feb 2020

  • McMurray TA, Byrne JA, Dunlop PSM, Winkelman JGM, Eggins BR, McAdams ET (2004) Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO2 films. Appl Catal A Gen 262:105–110

    CAS  Google Scholar 

  • Mohammadi M, Sabbaghi S (2014) Photo-catalytic degradation of 2,4-DCP wastewater using MWCNT/TiO2nano-composite activated by UV and solar light. Environ Nanotechnol Monit Manag 1–2:24–29

    Google Scholar 

  • Molinari R, Mungari M, Drioli E (2000) Study on a photocatalytic membrane reactor for water purification. Catal Today 55:71–78

    CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes Pigments 68:133–142

    CAS  Google Scholar 

  • Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater B89:303–317

    Google Scholar 

  • Olad A, Behboudi S, Entezami AA (2012) Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bull Mater Sci 35:801–809

    CAS  Google Scholar 

  • Pardeshi SK, Patil AB (2008) A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol Energy 82:700–705. https://doi.org/10.1016/j.solener.2008.02.007

    Article  CAS  Google Scholar 

  • Parra S, Olivero J, Pulgarin C (2002) Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. 36:75–85

  • Pasqui D, Atrei A, Barbucci R (2009) The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties. Nanotechnology 20:015703

    Google Scholar 

  • Qamar M, Saquib M, Muneer M (2005) Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes Pigments 65:1–9

    CAS  Google Scholar 

  • Radhakrishnana S, Sijua CR, Mahanta D, Patil S, Madra G (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254

    Google Scholar 

  • Radoici M, Saponjic Z, Jankovic IA, Cirić-Marjanovic G, Ahrenkiel SP, Comora MI (2013) Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl Catal B Environ 136–137(2013):133–139

    Google Scholar 

  • Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16:10370–10386

    CAS  Google Scholar 

  • Sakthivel S, Kisch H (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem 4:487–490

    CAS  Google Scholar 

  • Sannino D, Vaiano V, Ciambelli P, Eloy P, Gaigneaux EM (2011) Avoiding the deactivation of sulphated MoOx/TiO2 catalysts in the photocatalytic cyclohexane oxidative dehydrogenation by a fluidized bed photoreactor. Appl Catal A Gen 394:71–78

    CAS  Google Scholar 

  • Saquib M, Muneer M (2003) TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes Pigments 56:37–49

    CAS  Google Scholar 

  • Sayama K, Yoshida R, Kusama H, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phy Let 27:387–391

  • Shet A, Shetty KV (2016a) Solar light mediated photocatalytic degradation of phenol using Ag core - TiO2 shell (Ag@TiO2) nanoparticles in batch and fluidized bed reactor. Sol Energy 127:67–78 G

    CAS  Google Scholar 

  • Shet A, Shetty KV (2016b) Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environ Sci Pollut Res 23:20055–20064

    CAS  Google Scholar 

  • Sobana N, Selvam K, Swaminathan M (2008) Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2. Sep Purif Technol 62:648–653

    CAS  Google Scholar 

  • Sreeja S, Shetty KV (2016) Microbial disinfection of water with endotoxin degradation by photocatalysis using Ag@TiO2 core shell nanoparticles. Environ Sci Pollut Res 23:18154–18164

    CAS  Google Scholar 

  • Sreeja S, Shetty KV (2017) Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles. Sol Energy 157:236–243

    CAS  Google Scholar 

  • Subagio DP, Srinivasan M, Lim M, Lim TT (2010) Photocatalytic degradation of bisphenol-a by nitrogen-doped TiO2 hollow sphere in a Vis-LED photoreactor. Appl Catal B-Environ 95:414–422

    CAS  Google Scholar 

  • Tisa F, Abdul Raman AA, Wan Daud WMA (2014) Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manag 146:260–275

    CAS  Google Scholar 

  • Tryba B, Morawski AW, Inagaki M (2003) Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl Catal B Environ 41:427–433

    CAS  Google Scholar 

  • Vaiano V, Sacco O, Pisano D, Sannino D, Ciambelli P (2015) From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem Eng Sci 137:152–160

    CAS  Google Scholar 

  • Vaiano V, Matarangolo M, Sacco O (2018) UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets. Chem Eng J 350:703–713

    CAS  Google Scholar 

  • Wu XH, Jiang ZH, Liu HL, Li XD, Hu XU (2003) TiO2 ceramic films prepared by micro-plasma oxidation method for photodegradation of rhodamine B. Mater Chem Phys 80:39–43

    CAS  Google Scholar 

  • Xia Y, Wiesinger JM, MacDiarmid AG (1995) Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chem Mater 7:443–445

    CAS  Google Scholar 

  • Xing Z, Li J, Wang Q, Zhou W, Tian G, Pan K, Tian C, Zou J, Fu H (2013) A floating porous crystalline TiO2 ceramic with enhanced photocatalytic performance for wastewater decontamination. Eur J Inorg Chem 2013:2411–2417

    CAS  Google Scholar 

  • Xu Y, Zheng W, Liu W (1999) Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. J Photochem Photobiol A Chem 122:57–60

    CAS  Google Scholar 

  • Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W (2017a) Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochim Acta 247:486–495

    CAS  Google Scholar 

  • Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W (2017b) Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv 7:23699–23708

    Google Scholar 

  • Zhang L, Liu P, Su Z (2006) Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stabil 91(9):2213–2219

  • Zhang S, Li J, Niu H, Xu W, Xu J, Hu W, Wang X (2013) Visible-Light photocatalytic degradation of methylene blue using SnO /α-Fe O Hierarchical Nanoheterostructures. ChemPlusChem 78(2):192–199

  • Zhang X, Wu F, Wu X, Chen P, Deng N (2008) Photodegradation of acetaminophen in TiO2 suspended solution. J Hazard Mater 157:300–307

    CAS  Google Scholar 

  • Zyoud AH, Zaatar N, Saadeddin I et al (2010) CdS-sensitized TiO2 in phenazopyridine photo-degradation: catalyst efficiency, stability and feasibility assessment. J Hazard Mater 173:318–325

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Shetty Kodialbail.

Additional information

Responsible Editor: Suresh Pillai

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, V.R., Shetty Kodialbail, V. Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO2 nanocomposites immobilized on polystyrene cubes. Environ Sci Pollut Res 27, 14441–14453 (2020). https://doi.org/10.1007/s11356-020-07959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07959-2

Keywords

Navigation