Skip to main content
Log in

Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Muscovite/phillipsitic zeolite was introduced as a novel inorganic composite of stunning adsorption properties. The composite was investigated in the uptake reactions of Hg(II), As(V), and U(VI) as highly toxic water contaminants considering different adsorption factors. The adsorption properties of muscovite/phillipsitic zeolite are highly dependent on the pH values and the best decontamination percentages can be obtained at pH 4, pH 5, and pH 5 for Hg(II), As(V), and U(VI), respectively. The kinetic studies demonstrated adsorption equilibrium for Hg(II), As(V), and U(VI) after 360 min, 300 min, and 360 min, respectively. The equilibrium modeling suggested monolayer uptake for all the metals and represented mainly by the Langmuir model considering both the values of determination coefficient and chi-squared (χ2). The estimated maximum capacities are 117 mg/g (Hg(II)), 122.5 mg/g (As(V)), and 138.5 mg/g (U(VI)) which are higher values than several studied adsorbents. The Dubinin–Radushkevich adsorption energies of Hg(II) (19.4 kJ/mol), As(V) (25.6 kJ/mol), and U(VI) (26.47 kJ/mol) signify chemical adsorption mechanisms and close to the obtained values for the ion-exchange process. Additionally, the composite is of high reusability properties and was applied effectively for five decontamination cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Mu/Pz:

muscovite/phillipsite zeolite composite

t :

time (min)

q t :

adsorption capacity (mg/g)

K 2 :

Lagergren rate constant (g/mg min)

α :

initial adsorption rate (mg/min)

β :

surface saturation (g/mg)

C e :

the remaining metals concentrations (mg/L)

q e :

the uptake capacities after the equilibration time (mg/g)

q max :

Langmuir theoretical maximum uptake of the ions (mg/g)

b :

Langmuir model constant (L/mg)

K F :

Freundlich constant of the adsorption capacity

n :

Freundlich constant of the adsorption intensities

G°:

Gibbs free energy (kJ mol−1)

ΔH°:

standard enthalpy (kJ mol−1)

ΔS°:

entropy (kJ mol−1)

R :

gas constant

T :

the absolute temperature

K c :

Langmuir constant

Β :

D–R constant (mol2/kJ2)

ε :

Polanyi potential (kJ2/mol2)

q m :

theoretical adsorption capacity (mg/g)

References

  • Abukhadra MR, Mostafa M (2019) Effective decontamination of phosphate and ammonium utilizing novel muscovite/phillipsite composite; equilibrium investigation and realistic application. Sci Total Environ 667:101–111

    CAS  Google Scholar 

  • Abukhadra MR, Rabia M, Shaban M, Verpoort F (2018) Heulandite/polyaniline hybrid composite for efficient removal of acidic dye from water; kinetic, equilibrium studies and statistical optimization. Adv Powder Technol 29(10):2501–2511

    CAS  Google Scholar 

  • Abukhadra MR, Adley A, Bakery BM (2019) Green fabrication of bentonite/Chitosan@ cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. Int J Biol Macromol 126:402–413

    CAS  Google Scholar 

  • Akyil S, Eral M (2005) Preparation of composite adsorbents and their characteristics. J Radioanal Nucl Chem 266:89–93

    CAS  Google Scholar 

  • Alvarez-Cruz JL, Garrido-Hoyos SE (2019) Effect of the mole ratio of Mn/Fe composites on arsenic (V) adsorption. Sci Total Environ 668:47–55

    CAS  Google Scholar 

  • Amghouz Z, Ancín-Azpilicueta C, Burusco KK, García JR, Khainakov SA, Luquin A, Nieto R, Garrido JJ (2014) Biogenic amines in wine: individual and competitive adsorption on a modified zirconium phosphate. Microporous Mesoporous Mater 197:130–139

    CAS  Google Scholar 

  • Anirudhan TS, Lekshmi GS, Shainy F (2019) Synthesis and characterization of amidoxime modified chitosan/ bentonite composite for the adsorptive removal and recovery of uranium from seawater. J Colloid Interface Sci 534:248–261

    CAS  Google Scholar 

  • Azari A, Gharibi H, Kakavandi B, Ghanizadeh G, Javid A, Mahvi AH, Sharafi K, Khosravia T (2015) Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites. J Chem Technol Biotechnol 92:188–200

    Google Scholar 

  • Bang S, Patel M, Lippincott L, Meng X (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60(3):389–397

    CAS  Google Scholar 

  • Bapat SA, Jaspal DK (2016) Parthenium hysterophorus: novel adsorbent for the removal of heavy metals and dyes. Global J Environ Sci Manage 2(2):135–144

    CAS  Google Scholar 

  • Benhammou A, Yaacoubi A, Nibou L, Tanouti B (2005) Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. J Colloid Interface Sci 282(2):320–326

    CAS  Google Scholar 

  • Bian L, Nie J, Jiang X, Song M, Dong F, Li W, Shang L, Deng H, He H, Xu B, Wang B, Gu X (2018) Selective removal of uranyl from aqueous solutions containing a mix of toxic metal ions using Core-Shell MFe2O4-TiO2 nanoparticles of montmorillonite edge sites. ACS Sustain Chem Eng 6:16267–16278

    CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R (2008) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42(3):633–642

    CAS  Google Scholar 

  • Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    CAS  Google Scholar 

  • Caner N, Sarı A, Tuzen M (2015) Adsorption characteristics of mercury (II) ions from aqueous solution onto chitosan-coated diatomite. Ind Eng Chem Res 54:7524–7533

    CAS  Google Scholar 

  • Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium (VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    CAS  Google Scholar 

  • Du Y, Wang X, Wu J, Qi C, Li Y (2018) Adsorption and photoreduction of Cr(VI) via diatomite modified by Nb2O5 nanorods. Particuology 40:123–130

    CAS  Google Scholar 

  • El Bouraie M, Masoud AA (2017) Adsorption of phosphate ions from aqueous solution by modified bentonite with magnesium hydroxide Mg (OH)2. Appl. Clay Sci 140:157–164

    Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour Technol 101:5043–5053

    CAS  Google Scholar 

  • Fu H, Yang Y, Zhu R, Liu J, Usman M, Chen Q, He H (2018) Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. J Colloid Interface Sci 530:704–713

    CAS  Google Scholar 

  • Gedik K, Imamoglu I (2008) Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. J Hazard Mater 155(1–2):385–392

    CAS  Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 3973–3993

  • Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, Xu W (2014) Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J Hazard Mater 278:211–220

    CAS  Google Scholar 

  • Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multiwalled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228

    CAS  Google Scholar 

  • Hassan AF, Hrdina R (2018) Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: static and dynamic adsorption studies. Int J Biol Macromol 109:507–516

    CAS  Google Scholar 

  • Hassan AF, Abdel-Mohsen AM, Elhadidy H (2014) Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int J Biol Macromol 68:125–130

    CAS  Google Scholar 

  • He X, Deng F, Shen T, Yang L, Chen D, Luo J, Luo X, Min X, Wang F (2019) Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight. J Colloid Interface Sci 539:223–234

    CAS  Google Scholar 

  • Hong HJ, Farooq W, Yang JS, Yang JW (2010) Preparation and evaluation of Fe-Al binary oxide for arsenic removal: comparative study with single metal oxides. Sep Sci Technol 45(12):1975–1981

    CAS  Google Scholar 

  • Hu B, Mei X, Li X, Hu J, Xu D (2017) Decontamination of U(VI) from n ZVI/CNF composites investigated by batch, spectroscopic and modeling techniques. J Mol Liq 237:1–9

    CAS  Google Scholar 

  • Hu Y, Zhao C, Yin L, Wen T, Yang Y, Ai Y, Wang X (2018) Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U(VI) and Eu(III) on magnetic MnFe2O4 nanocubes. Chem Eng J 349:347–357

    CAS  Google Scholar 

  • Huang Y, Li S, Chen J, Zhang X, Chen Y (2014) Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies. Appl Surf Sci 293:160–168

    CAS  Google Scholar 

  • Inglezakis VJ, Zorpas AA (2012) Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin Water Treat 39:149–157

    CAS  Google Scholar 

  • Jainae K, Sukpirom N, Fuangswasdi S, Unob F (2015) Adsorption of Hg (II) from aqueous solutions by thiol-functionalized polymer-coated magnetic particles. J Ind Eng Chem 23:273–278

    CAS  Google Scholar 

  • Khamparia S, Jaspal DK (2017) Evaluation of decoloration potential of Xanthium strumarium seed hull for adsorption of direct red 81 in aqueous solution. Environ Dev Sustain 19:1933–1951

    Google Scholar 

  • Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D, Hou LA, Chang X, Shih K (2020) Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J Hazard Mater 382:120784

    CAS  Google Scholar 

  • Lee CG, Alvarez PJ, Nam A, Park SJ, Do T, Choi US, Lee SH (2017) Arsenic (V) removal using an amine-doped acrylic ion exchange fiber: kinetic, equilibrium, and regeneration studies. J Hazard Mater 325:223–229

    CAS  Google Scholar 

  • Li P, Gao B, Li A, Yang H (2018a) Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite. Microporous Mesoporous Mater 263:210–219

    CAS  Google Scholar 

  • Li X, Zhang D, Sheng F, Qing H (2018b) Adsorption characteristics of copper (II), zinc (II) and mercury (II) by four kinds of immobilized fungi residues. Ecotoxicol Environ Saf 147:357–366

    CAS  Google Scholar 

  • Li Y, Li W, Liu Q, Meng H, Lu Y, Li C (2018c) Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury (II) from wastewater. J Environ Sci 68:169–176

    Google Scholar 

  • Li L, Lu W, Ding D, Dai Z, Cao C, Liu L, Chen T (2019a) Adsorption properties of pyrene-functionalized nano-Fe3O4 mesoporous materials for uranium. J Solid State Chem 270:666–673

    CAS  Google Scholar 

  • Li M, Liu H, Chen T, Dong C, Sun Y (2019b) Synthesis of magnetic biochar composites for enhanced uranium (VI) adsorption. Sci Total Environ 651:1020–1028

    CAS  Google Scholar 

  • Liao Y, Wang M, Chen D (2019) Electrosorption of uranium (VI) by highly porous phosphate-functionalized graphene hydrogel. Appl Surf Sci 484:83–96

    CAS  Google Scholar 

  • Lin H, Wu X, Zhu J (2016) Kinetics, equilibrium, and thermodynamics of ammonium sorption from swine manure by natural chabazite. Sep Sci Technol 51(2):202–213

    CAS  Google Scholar 

  • Lingamdinne LP, Choi YL, Kim IS, Yang JK, Koduru JR, Chang YY (2017) Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J Hazard Mater 326:145–156

    CAS  Google Scholar 

  • Liu CH, Chuang YH, Chen TY, Tian Y, Li H, Wang MK, Zhang W (2015) Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environ Sci Technol 49(13):7726–7734

    CAS  Google Scholar 

  • Liu Y, Yan C, Zhao J, Zhang Z, Wang H, Zhou S, Wu L (2018) Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J Clean Prod 202:11–22

    CAS  Google Scholar 

  • Luo X, Wang C, Wang L, Deng F, Luo S, Tu X, Au C (2013) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water. Chem Eng J 220:98–106

    CAS  Google Scholar 

  • Ma J, Zhu Z, Chen B, Yang M, Zhou H, Li C, Yu F, Chen J (2013) One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J Mater Chem A 1(15):4662–4666

    CAS  Google Scholar 

  • Mahanta N, Chen JP (2013) A novel route to the engineering of zirconium immobilized nano-scale carbon for arsenate removal from water. J Mater Chem 1:8636–8644

    CAS  Google Scholar 

  • Martinson CA, Reddy KJ (2009) Adsorption of arsenic (III) and arsenic(V) by cupric oxide nanoparticles. J Colloid Interf Sci 336:406–411

    CAS  Google Scholar 

  • Mishima K, Du X, Miyamoto N, Kano N, Imaizumi H (2018) Experimental and theoretical studies on the adsorption mechanisms of uranium (VI) ions on chitosan. J Funct Biomater 9(3):49

    CAS  Google Scholar 

  • Mohagheghian A, Pourmohseni M, Vahidi-Kolur R, Yang JK, Shirzad-Siboni M (2017) Preparation and characterization of kaolin coated with Fe3O4 nanoparticles for the removal of hexavalent chromium: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 90:262–272

    CAS  Google Scholar 

  • Mohamed F, Abukhadra MR, Shaban M (2018) Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci. Total Environ 640:352–363

    Google Scholar 

  • Monier M (2012) Adsorption of Hg2+,Cu2+and Zn2+ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff’s base. Int J Biol Macromol 50:773–781

    CAS  Google Scholar 

  • Morali N (2006) Investigation of zinc and lead removal from aqueous solution using clinoptilolite. Published master’s thesis. Middle East Technical University, Turkey

  • Nekhunguni PM, Tavengwa NT, Tutu H (2017) Sorption of uranium (VI) onto hydrous ferric oxide-modified zeolite: assessment of the effect of pH, contact time, temperature, selected cations and anions on sorbent interactions. J Environ Manag 204:571–582

    CAS  Google Scholar 

  • Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th (IV)/ U (VI). J Hazard Mater 309:107–115

    CAS  Google Scholar 

  • Park J, Bae J, Jin K, Park J (2019) Carboxylate-functionalized organic nanocrystals for high-capacity uranium sorbents. J Hazard Mater 371:243–252

    CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As (V) and As (III) by nanocrystalline titanium dioxide. Water Res 39(11):2327–2337

    CAS  Google Scholar 

  • Pepper RA, Couperthwaite SJ, Millar GJ (2018) Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous. J Water Process Eng 25:138–148

    Google Scholar 

  • Raghu MS, Kumar KY, Prashanth MK, Prasanna BP, Vinuth R, Kumar CP (2017) Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. J Water Process Eng 17:22–31

    Google Scholar 

  • Rajabi M, Mirzab B, Mahanpoorc K, Mirjalilid M, Najafi F, Moradif O, Sadegh H, Shahryari-ghoshekandi R, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters. J Ind Eng Chem 34:130–138

    CAS  Google Scholar 

  • Ramirez-Muñiz K, Perez-Rodriguez F, Rangel-Mendez R (2018) Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite. J Mol Liq 264:253–260

    Google Scholar 

  • Rong X, Qiu F, Qin J, Zhao H, Yan J, Yang D (2015) A facile hydrothermal synthesis, adsorption kinetics and isotherms to congo red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. J Ind Eng Chem 26:354–363

    CAS  Google Scholar 

  • Sahan T, Erol F, Yilmaz S (2018) Mercury (II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization. Microchem J 138:360–368

    CAS  Google Scholar 

  • Shaban M, AbuKhadra MR (2017) Geochemical evaluation and environmental application of Yemeni natural zeolite as sorbent for Cd2+ from solution: kinetic modeling, equilibrium studies, and statistical optimization. Environ Earth Sci 76:310

  • Shaban M, Abukhadra MR, Mohamed AS, Shahien MG, Ibrahim SS (2018a) Synthesis of mesoporous graphite functionalized by nitrogen for efficient removal of safranin dye utilizing rice husk ash; equilibrium studies and response surface optimization. J Inorg Organomet Polym Mater 28:279–294

    CAS  Google Scholar 

  • Shaban M, Abukhadra MR, Shahien MG, Ibrahim SS (2018b) Novel bentonite/zeolite NaP composite efficiently removes methylene blue and congo red dyes. Environ Chem Lett 16(1):275–280

    CAS  Google Scholar 

  • Shaban M, Sayed MI, Shahien MG, Abukhadra MR, Ahmed ZM (2018c) Adsorption behaviour of inorganic and organic modified kaolinite for congo red dye from water; kinetic modeling and equilibrium studies. J Sol Gel Sci Technol 87:427–441

    CAS  Google Scholar 

  • Sherlala AIA, Raman AAA, Bello MM, Buthiyappan A (2019) Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J Environ Manag 246:547–556

    CAS  Google Scholar 

  • Song BY, Eom Y, Lee TG (2011) Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites. Appl Surf Sci 257(10):4754–4759

    CAS  Google Scholar 

  • Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on bacterium-derived carbon nanofibers. Environ Sci Technol 50:4459

    CAS  Google Scholar 

  • Sun N, Wen X, Yan C (2018a) Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse. Int J Biol Macromol 108:1199–1206

    CAS  Google Scholar 

  • Sun Z, Chen D, Chen B, Kong L, Su M (2018b) Enhanced uranium (VI) adsorption by chitosan modified phosphate rock. Colloids Surf A Physicochem Eng Asp 547:141–147

    CAS  Google Scholar 

  • Sun J, Zhang X, Zhang A, Liao C (2019) Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J Environ Sci 80:197–207

    Google Scholar 

  • Tan L, Wang J, Liu Q, Sun Y, Zhang H, Wang Y, Jing X, Liu J, Song D (2015a) Facile preparation of oxine functionalized magnetic Fe3O4 particles for enhanced uranium (VI) adsorption. Colloids Surf A Physicochem Eng Asp 466:85–91

    CAS  Google Scholar 

  • Tan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J (2015b) Synthesis of Fe3O4@TiO2 core–shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf A Physicochem Eng Asp 469:279–286

    CAS  Google Scholar 

  • Tang H, Li C, Duan Y, Zhu C, Cai L (2019) Combined experimental and theoretical studies on adsorption mechanisms of gaseous mercury (II) by calcium-based sorbents: the effect of unsaturated oxygen sites. Sci Total Environ 656:937–945

    CAS  Google Scholar 

  • Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, LiY HY (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185(1):93–100

    CAS  Google Scholar 

  • Tran L, Wu PX, Zhu YJ, Yang L, Zhu NW (2015) Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by mercaptoethylamine/mercaptopropyltrimethoxysilane functionalized vermiculites. J Coll Interf Sci 445:348–356

    CAS  Google Scholar 

  • Tu Y, Feng P, Ren Y, Cao Z, Wang R, Xu Z (2019) Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel 238:34–43

    CAS  Google Scholar 

  • Uppal H, Chawla S, Joshi AG, Haranath D, Vijayan N, Singh N (2019) Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water. J Clean Prod 208:458–469

    CAS  Google Scholar 

  • Vahedi V, Pasbakhsh P (2014) Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polym Test 39:101–114

    CAS  Google Scholar 

  • Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A (2007) A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym 67(3):184–201

    CAS  Google Scholar 

  • Wahby A, Abdelouahab-Reddam Z, El Mail R, Stitou M, Silvestre-Albero J, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2011) Mercury removal from aqueous solution by adsorption on activated carbons prepared from olive stones. Adsorption 17(3):603–609

    CAS  Google Scholar 

  • Wang G, Liu J, Wang X, Xie Z, Deng N (2009a) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    CAS  Google Scholar 

  • Wang Z, Wu G, He C (2009b) Ion-imprinted thiol-functionalized silica gel sorbent for selective separation of mercury ions. Microchim Acta 165:151–157

    CAS  Google Scholar 

  • Wei Y, Zhang L, Shen L, Hua D (2016) Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution. J Mol Liq 221:1231–1236

    CAS  Google Scholar 

  • Wu Q, Zhang Z (2019) The preparation of self-floating Sm/N co-doped TiO2/diatomite hybrid pellet with enhanced visible-light-responsive photoactivity and reusability. Adv Powder Technol 30:415–422

    CAS  Google Scholar 

  • Wu Y, Li X, Yang Q, Wang D, Xu QG, Yao F, Chen F, Tao Z, Huan X (2019) Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. J Environ Manag 231:370–379

    CAS  Google Scholar 

  • Xiao-teng Z, Dong-mei J, Yi-qun X, Jun-chang C, Shuai H, Liang-shu X (2019) Adsorption of uranium (VI) from aqueous solution by modified rice stem. J Chem. https://doi.org/10.1155/2019/6409504

  • Younes AA, Masoud AM, Taha MH (2018) Uranium sorption from aqueous solutions using polyacrylamide-based chelating sorbents. Sep Sci Technol 53:2573–2586

    CAS  Google Scholar 

  • Zahran F, El-Maghrabi HH, Hussein G, Abdelmaged SM (2019) Fabrication of bentonite based nanocomposite as a novel low cost adsorbent for uranium ion removal. Environ Nanotechnol Monit Manag 11:100205

    Google Scholar 

  • Zao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U(VI) ions on few-layered grapheme oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Google Scholar 

  • Zhang X, Wang J (2018) Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium. Solid State Sci 75:14–20

    CAS  Google Scholar 

  • Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiolfunctionalized superparamagnetic carbon nanotubes. Chem Eng J 210:45–52

    CAS  Google Scholar 

  • Zhu J, Deng B, Yang J, Gang D (2009) Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon 47:2014–2025

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. DF-125-130-1441. The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa R. Abukhadra.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, M.A., Abukhadra, M.R. & Mostafa, M. Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism. Environ Sci Pollut Res 27, 13247–13260 (2020). https://doi.org/10.1007/s11356-020-07945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07945-8

Keywords

Navigation