Abstract
As a cost-effective, environmentally friendly remediation technology, phytoremediation is defined as the use of green plants to remove pollutants from the environment or render them harmless and has been applied to a variety of contaminated sites throughout the world. There is a prominent phenomenon in which publications about phytoremediation increase each year and involve an increasing number of subject categories. This paper adopts the scientometric analysis method to assess the current state and explore the trends of phytoremediation research based on the bibliographic records retrieved from the Web of Science Core Collection (WoSCC). The results of this paper clearly answer the following questions. (1) What are the publishing characteristics of research on the topic of phytoremediation? What are the characteristics of academic collaboration in phytoremediation research? (2) What are the characteristics and development trends of phytoremediation research? (3) What are the hotspots and frontiers of phytoremediation research? Overall, the research method provides a new approach for the assessment of the performance of phytoremediation research. These results may help new researchers quickly integrate into the field of phytoremediation, as they can easily grasp the frontiers of phytoremediation research and obtain more valuable scientific information. This study also provides references for the follow-up research of relevant researchers.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078
Alford ÉR, Pilon-Smits EAH, Fakra SC, Paschke MW (2012) Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. Am J Bot 99:1930–1941. https://doi.org/10.3732/ajb.1200124
Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143. https://doi.org/10.1016/j.jenvman.2017.04.060
Azous AL, Horner RR (1997) Wetlands and urbanization: implications for the future. Final Report of the Puget Sound Wetlands and Stormwater Management Research Program. CRC Press, Boca Raton
Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Heavy Metal Tolerance in Plants: Evolutionary Aspects. pp 155–177
Balsamo RA, Kelly WJ, Satrio JA, Ruiz-Felix MN, Fetterman M, Wynn R, Hagel K (2015) Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils. Int J Phytoremediation 17:448–455. https://doi.org/10.1080/15226514.2014.922918
Barazani O, Dudai N, Khadka UR, Golan-Goldhirsh A (2004) Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. Chemosphere 57:1213–1218. https://doi.org/10.1016/j.chemosphere.2004.08.037
Beath OA, Eppson HF, Gilbert CS (1937) Selenium distribution in and seasonal variation of type vegetation occurring on seleniferous soils. J Am Pharm Assoc 26:394–405. https://doi.org/10.1002/jps.3080260507
Benabid H, Ghorab MF (2013) Study of the translocation and distribution of cadmium into bean plants (Phaseolus vulgaris) using Labelled Cd-109. World J Nano Sci Eng 3:108–111. https://doi.org/10.4236/wjnse.2013.33015
Bhatia NP, Walsh KB, Baker AJM (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349. https://doi.org/10.1093/jxb/eri135
Broadhurst CL, Chaney RL (2016) Growth and metal accumulation of an alyssum murale nickel hyperaccumulator ecotype co-cropped with alyssum montanum and perennial ryegrass in serpentine soil. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.00451
Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544. https://doi.org/10.1007/BF02187261
Cabral L, Soares CRFS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664. https://doi.org/10.1007/s11274-015-1918-y
Caldelas C, Araus JL, Febrero A, Bort J (2012) Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol Plant 34:1217–1228. https://doi.org/10.1007/s11738-012-0956-4
Caporaso JG, Fierer N, Peña AG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335
Chandra Sekhar K, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514. https://doi.org/10.1016/j.chemosphere.2004.09.022
Chaney RL, Angle JS, McIntosh MS et al (2005) Using hyperaccumulator plants to phytoextract soil Ni and cd. In: Mackova M, Dowling D, Macek T (eds) Zeitschrift fur Naturforschung - Section C Journal of Biosciences. Springer, Dordrecht, pp 190–198
Chen C (2004) Searching for intellectual turning points: Progressive knowledge domain visualization. Proc Natl Acad Sci 101:5303–5310. https://doi.org/10.1073/pnas.0307513100
Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci 57:359–377. https://doi.org/10.1002/asi
Chen C, Chen Y, Horowitz M et al (2009) Towards an explanatory and computational theory of scientific discovery. J Inf Secur 3:191–209. https://doi.org/10.1016/j.joi.2009.03.004
Chen B, Ai W, Gong H, Gao X, Qiu B (2013) Cleaning up of heavy metals-polluted water by a terrestrial hyperaccumulator Sedum alfredii Hance. Front Biol (Beijing) 8:599–605. https://doi.org/10.1007/s11515-013-1274-y
Chen C, Dubin R, Kim MC (2014) Emerging trends and new developments in regenerative medicine: a scientometric update (2000 – 2014). Expert Opin Biol Ther 14:1295–1317. https://doi.org/10.1517/14712598.2014.920813
Chibuike GU, Obiora SC (2014, 2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. https://doi.org/10.1155/2014/752708
Claire-Lise M, Nathalie V (2012) The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol 30:9–14. https://doi.org/10.1016/j.nbt.2012.07.009
Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003
Cosio C, Cosio C, Martinoia E et al (2004) Hyperaccumulation of cadmium and zinc in. Society 134:716–725. https://doi.org/10.1104/pp.103.031948.translocation
Dahmani-Muller H, Van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238. https://doi.org/10.1016/S0269-7491(99)00262-6
Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11:664–691. https://doi.org/10.1080/15226510902787302
Datta R, Das P, Tappero R, Punamiya P, Elzinga E, Sahi S, Feng H, Kiiskila J, Sarkar D (2017) Evidence for exocellular arsenic in fronds of Pteris vittata. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-03194-x
De La Rosa G, Peralta-Videa JR, Montes M et al (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168. https://doi.org/10.1016/j.chemosphere.2004.01.028
Ding Z, Hu X, Wu X, Yin D (2010) Metal contents and fractionation in contaminated soil after column leaching using [S, S]-EDDS. Chem Speciat Bioavailab 22:247–255. https://doi.org/10.3184/095422910X12894943294346
Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175. https://doi.org/10.1023/A:1022527207359
Eagher RIBM (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813. https://doi.org/10.1073/pnas.96.12.6808
Eapen S, Singh S, D’Souza SF (2007) Phytoremediation of metals and radionuclides. Environ Bioremed Technol 75:189–209. https://doi.org/10.1007/978-3-540-34793-4_8
Elekes CC, Busuioc G (2011) The modeling of phytoremediation process for soils polluted with heavy metals. Agron Ser Sci Res Stiint Ser Agron 54:133–136
Elekes CC, Ionita G, Busuioc G (2009) The bioconversion factor of some green plants growth in the metallurgic industrial area. Ann Food Sci Technol 10:580–585
El-Sheikh EA, Ashour M-BA (2010) Biodegradation technology for pesticide toxicity elimination. In: Fulekar MH (ed) Bioremediation Technology. Bioremediation technology: Recent Advances, pp 167–205
Escarré J, Lefèbvre C, Gruber W et al (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437. https://doi.org/10.1046/j.1469-8137.2000.00599.x
Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41. https://doi.org/10.2307/3033543
Fulekar MH (2016) Phytoremediation of heavy metals by Helianthus annuus in aquatic and soil environment. Int J Curr Microbiol Appl Sci 5:392–404. https://doi.org/10.20546/ijcmas.2016.507.043
Gilabel AP, Nogueirol RC, Garbo AI, Monteiro FA (2014) The role of sulfur in increasing Guinea grass tolerance of copper phytotoxicity. Water Air Soil Pollut 225:1–10. https://doi.org/10.1007/s11270-013-1806-8
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374. https://doi.org/10.1016/j.biotechadv.2010.02.001
Haag-Kerwer A, Schäfer HJ, Heiss S et al (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835. https://doi.org/10.1093/jxb/50.341.1827
Harris J, Schneberg KA, Pilon-Smits EAH (2014) Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239:479–491. https://doi.org/10.1007/s00425-013-1996-8
Hinchman R, Negri M, Gatliff E (2000) Phytoremediation: using green plants to clean up contaminated soil, groundwater and wastewater. Proc Int Top Meet Nucl Hazard Waste Manag Spectr 96:1–13
Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni Hyperaccumulator Thlaspi goesingense bacterial communities associated with flowering plants of the Ni Hyperaccumulator Thlaspi goesingenseIdris, R., Trifonova, R., Puschenreiter, M., Wenzel. Appl Environ Microbiol 70:2667–2677. https://doi.org/10.1128/AEM.70.5.2667
Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science (80- ) 193:579–580. https://doi.org/10.1126/science.193.4253.579
Jagetiya B, Sharma A, Soni A, Khatik UK (2014) Phytoremediation of radionuclides: a report on the state of the art. In: Gupta DK, Walther C (eds) Radionuclide contamination and remediation through plants. Springer International Publishing, Switzerland, pp 1–31
Johnson A, Singhal N (2011) A review of amendment-enhanced phytoextraction of soil contaminants. Environ Res J 5:371–425
Kayser A, Wenger K, Keller A et al (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783. https://doi.org/10.1021/es990697s
Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332. https://doi.org/10.1016/j.chemosphere.2012.09.045
Kidd P, Barceló J, Bernal MP et al (2009) Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259. https://doi.org/10.1016/j.envexpbot.2009.06.013
Klaber NS, Barker AV (2014) Accumulation of phosphorus and arsenic in two perennial grasses for soil remediation. Commun Soil Sci Plant Anal 45:810–818. https://doi.org/10.1080/00103624.2013.857681
Knight B, Zhao FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78. https://doi.org/10.1023/A:1004255323909
Kos B, Leštan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629. https://doi.org/10.1021/es0200793
Kothe E, Varma A (2012) Bio-geo interactions in metal-contaminated soils. In: Editors EK, Varma A (eds) Soil Biology. pp 279–296
Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354. https://doi.org/10.1104/pp.122.4.1343
Kumar N, Soni H, Kumar R (2011) Characterization of heavy metals in vegetables using inductive coupled plasma analyzer (ICPA). J Appl Sci Environ Manag 11:75–79. https://doi.org/10.4314/jasem.v11i3.55131
Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109. https://doi.org/10.2134/jeq2002.1090
Legault EK, James CA, Stewart K, Muiznieks I, Doty SL, Strand SE (2017) A field trial of TCE phytoremediation by genetically modified poplars expressing cytochrome P450 2E1. Environ Sci Technol 51:6090–6099. https://doi.org/10.1021/acs.est.5b04758
Li YM, Chaney R, Brewer E et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. https://doi.org/10.1023/A:1022527330401
Li C, Ji X, Luo X (2019a) Phytoremediation of heavy metal pollution: a bibliometric and scientometric analysis from 1989 to 2018. Int J Environ Res Public Health 16:4755–4782. https://doi.org/10.3390/ijerph16234755
Li C, Wang M, Luo X et al (2019b) Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: potential application to phytoremediation and environmental monitoring. J Environ Radioact 198:43–49. https://doi.org/10.1016/j.jenvrad.2018.12.018
Lin Z, Wu C, Hong W (2015) Visualization analysis of ecological assets/values research by knowledge mapping. Acta Ecol Sin 35:142–154. https://doi.org/10.1016/j.chnaes.2015.07.005
Liu Z, Yin Y, Liu W, Dunford M (2015) Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics 103:135–158. https://doi.org/10.1007/s11192-014-1517-y
Liu Y, Sun T, Yang L (2017) Evaluating the performance and intellectual structure of construction and demolition waste research during 2000–2016. Environ Sci Pollut Res 24:19259–19266. https://doi.org/10.1007/s11356-017-9598-9
Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20. https://doi.org/10.1046/j.1469-8137.2000.00560.x
Lorestani B, Cheraghi M, Yousefi N (2011) Accumulation of Zb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran. Arch Biol Sci 63:739–745. https://doi.org/10.2298/ABS1103739L
Luo R, Li J, Zhao Y et al (2017a) A critical review on the research topic system of soil heavy metal pollution bioremediation based on dynamic co-words network measures. Geoderma 305:281–292. https://doi.org/10.1016/j.geoderma.2017.06.019
Luo X, Zhang X, Zhang L, Huang G (2017b) Visualization of Chinese CBM research: a scientometrics review. Sustain 9:980–991. https://doi.org/10.3390/su9060980
Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579. https://doi.org/10.1038/35054664
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023
Maletić SP, Beljin JM, Rončević SD, Grgić MG, Dalmacija BD (2019) State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments : sources , fate , bioavailability and remediation techniques. J Hazard Mater 365:467–482. https://doi.org/10.1016/j.jhazmat.2018.11.020
McCutcheon SC, Schnoor JL (eds) (2003) Phytoremediation: transformation and control of contaminants. John Wiley & Sons, Hoboken
Mohanty M, Patra HK (2012) Phytoremediation potential of Paragrass- an in situ approach for chromium contaminated soil. Int J Phytoremediation 14:796–805. https://doi.org/10.1080/15226514.2011.619595
Moreira H, Pereira SIA, Marques APGC, Rangel AO, Castro PM (2016) Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ Sci Pollut Res 23:6940–6950. https://doi.org/10.1007/s11356-015-5914-4
Moya TA, van den Dobbelsteen A, Ottelé M, Bluyssen PM (2019) A review of green systems within the indoor environment. Indoor Built Environ 28:298–309. https://doi.org/10.1177/1420326X18783042
Mukherjee P, Roychowdhury R, Roy M (2017) Phytoremediation potential of rhizobacterial isolates from Kans grass (Saccharum spontaneum) of fly ash ponds. Clean Techn Environ Policy 19:1373–1385. https://doi.org/10.1007/s10098-017-1336-y
Mukhtar S, Bhatti HN, Khalid M et al (2010) Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickle (Ni) and lead (Pb) contaminated water. Pak J Bot 42:4017–4026. https://doi.org/10.5142/jgr.2010.34.4.363
MURTIĆ S, ZAHIROVIĆ Ć, ČIVIĆ H et al (2018) Uptake of heavy metals by tomato plants (Lycopersicum Esculentum MILL.) and their distribution inside the plant. Agric For 64:251–261. https://doi.org/10.17707/agricultforest.64.4.25
Nalla S, Hardaway CJ, Sneddon J (2012) Phytoextraction of selected metals by the first and second growth seasons of spartina alterniflora. Instrum Sci Technol 40:17–28. https://doi.org/10.1080/10739149.2011.633143
Nazir A, Malik RN, Ajaib M et al (2011) Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak J Bot 43:1925–1933
Negri MC, Hinchman RR, Quinn J, Wozniak JB (2000) Deployment of phytoremediation at the 317/319 area at argonne national laboratory - east. Off Sci Tech Inf Tech Rep 1–8
Nirmal Kumar JI, Soni H, Kumar RN, Bhatt I (2009) Hyperaccumulation and mobility of heavy metals in vegetable crops in India. J Agric Environ 10:29–38. https://doi.org/10.3126/aej.v10i0.2128
Olatunji SO, Ximba JB, Fatoki SO, Opeolu OB (2014) Assessment of the phytoremediation potential of Panicum maximum (Guinea grass) for selected heavy metal removal from contaminated soils. Afr J Biotechnol 13:1979–1984. https://doi.org/10.5897/ajb2014.13635
Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98:9995–10000. https://doi.org/10.1073/pnas.171039798
Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4
Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62:5633–5640. https://doi.org/10.1093/jxb/err247
Rahman M (2013) Study on the accumulation of copper from soil by shoots and roots of some selective plant species. Int J Biosci 3:68–75. https://doi.org/10.12692/ijb/3.6.68-75
Rangnekar SS, Sahu SK, Pandit GG, Gaikwad VB (2013) Study of uptake of Pb and Cd by three nutritionally important Indian vegetables grown in artificially contaminated soils of Mumbai, India. Int Res J Environ Sci 2:53–59
Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. https://doi.org/10.1016/j.plantsci.2010.08.016
Ravikumar S, Thamizhiniyzn P (2015) Influence of Lead on growth and nutrient accumulation in black gram (Vigna mungo. L). Int Lett Nat Sci 21:22–27. https://doi.org/10.18052/www.scipress.com/ilns.21.22
Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ Pollut Ser A, Ecol Biol 31:277–285. https://doi.org/10.1016/0143-1471(83)90064-8
Rennenberg H, Peuke AD (2005) Improved phytoremediation of contaminated soils by changes in sulfur metabolism. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ et al (eds) Sulfur Transport and Assimilation in Plants in the Post Genomic Era. Backhuys Publishers, Leiden, pp 201–208
Robinson BH, Chiarucci A, Brooks RR et al (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86. https://doi.org/10.1016/S0375-6742(97)00010-1
Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347. https://doi.org/10.1016/S0031-9422(97)00593-1
Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433. https://doi.org/10.1104/pp.109.4.1427
Salvatore M (2014) Evaluation of heavy metal toxicity on radish: comparison between soil and floating hydroponics systems. Am J Exp Agric 2:174–185. https://doi.org/10.9734/ajea/2012/862
Sánchez V, López-Bellido FJ, Cañizares P, Rodríguez L (2017) Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere 185:119–126. https://doi.org/10.1016/j.chemosphere.2017.07.013
Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954. https://doi.org/10.2134/jeq2003.1939
Soleimani M, Hajabbasi MA, Afyuni M et al (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Casp J Environ Sci 7:59–70
Song J, Li Y, Feng Z, Wang H (2018) Cluster analysis of the intellectual structure of PPP research. J Manag Eng 35:04018053. https://doi.org/10.1061/(asce)me.1943-5479.0000664
Su Y, Han FX, Chen J et al (2008) Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytoremediation 10:547–560. https://doi.org/10.1080/15226510802115091
Suelee AL, Hasan SNMS, Kusin FM, Yusuff FM, Ibrahim ZZ (2017) Phytoremediation potential of Vetiver grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water Air Soil Pollut 228:1–15. https://doi.org/10.1007/s11270-017-3349-x
Sytar O, Brestic M, Taran N, Zivcak M (2015) Plants used for biomonitoring and phytoremediation of trace elements in soil and water. In: Ahmad P (ed) Plant Metal Interaction: Emerging Remediation Techniques. Elsevier, pp 361–384
Szczygłowska M, Piekarska A, Konieczka P, Namieśnik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771. https://doi.org/10.3390/ijms12117760
Tao L, Ren J, Wang C (2010) Effects of chelators on growth, phytoextraction of heavy metals in soybean (Glycine max L.). Fresenius Environ Bull 19:981–987
Thayalakumaran T, Robinson BH, Vogeler I et al (2003) Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant Soil 254:415–423. https://doi.org/10.1023/A:1025527931486
Thewys T, Vangronsveld J, Vassilev A, et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. https://doi.org/10.1007/s11356-009-0213-6
Thompson ND, Hellinger WC, Kay RS, Cohen L, Ragan P, Voss RA, Bacalis LP, Xia G, Keating MR, Dickson RC, Hughes CB, Williams IT, Perz JF (2009) Healthcare-associated hepatitis C virus transmission among patients in an abdominal organ transplant center. Transpl Infect Dis 11:324–329. https://doi.org/10.1111/j.1399-3062.2009.00406.x
Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154. https://doi.org/10.1016/j.envpol.2004.01.017
Vallini G, Di Gregorio S, Lampis S (2005) Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effluents. Z Naturforsch - Sect C J Biosci 60:349–356. https://doi.org/10.1515/znc-2005-3-419
Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776. https://doi.org/10.1021/es902514d
Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. https://doi.org/10.1007/s11356-009-0213-6
Vargas C, Pérez-Esteban J, Escolástico C, Masaguer A, Moliner A (2016) Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environ Sci Pollut Res 23:13521–13530. https://doi.org/10.1007/s11356-016-6430-x
Visioli G, D’egidio S, Sanangelantoni AM (2015) The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Front Plant Sci 5:1–12. https://doi.org/10.3389/fpls.2014.00752
Weyens N, van der Lelie D, Taghavi S et al (2009a) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598. https://doi.org/10.1016/j.tibtech.2009.07.006
Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. https://doi.org/10.1016/j.copbio.2009.02.012
Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919. https://doi.org/10.1016/j.envpol.2010.06.004
Whiting SN, Leake JR, Mcgrath SP, Baker AJM (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210. https://doi.org/10.1046/j.1469-8137.2000.00570.x
Wolverton BC, Johnson A, Bounds K (1989) Interior landscape plants for indoor air pollution abatement. NASA Tech Rep Serv 15:1–30
Xiaomei L, Qitang W, Banks MK (2005) Effect of simultaneous establishment of Sedum alfredii and Zea mays on heavy metal accumulation in plants. Int J Phytoremediation 7:43–53. https://doi.org/10.1080/16226510590915800
Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495. https://doi.org/10.1021/es9014647
Xu P, Wang Z (2014) A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L. Water Air Soil Pollut 225:1938–1946. https://doi.org/10.1007/s11270-014-1938-5
Yang L, Sun T, Liu Y, Guo H, Lv L, Zhang J, Liu C (2017) Photosynthesis of alfalfa (Medicago sativa) in response to landfill leachate contamination. Chemosphere 186:743–748. https://doi.org/10.1016/j.chemosphere.2017.08.056
Yang L, He L, Ma Y, Wu L, Zhang Z (2019) A visualized investigation on the intellectual structure and evolution of waste printed circuit board research during 2000–2016. Environ Sci Pollut Res 26:11336–11341. https://doi.org/10.1007/s11356-019-04590-8
Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762. https://doi.org/10.1016/j.envint.2005.02.004
Zhang XF, Zhu AN, Yang WL, Zhang JB (2017) Accumulation of organic components and its association with macroaggregation in a sandy loam soil following conservation tillage. Plant Soil 416:1–15. https://doi.org/10.1007/s11104-017-3183-3
Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. https://doi.org/10.1023/A:1022530217289
Zhuang P, Ye ZH, Lan CY et al (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil 276:153–162. https://doi.org/10.1007/s11104-005-3901-0
Funding
This research was supported by the defence basic scientific research project, China (16ZG6101, JCKY2016404C002), the special plan of scientific research projects of education department of Shaanxi Province (17JK0159), the basic research plant of natural science research projects of science and technology department of Shaanxi Province (2018JM4028), the natural science project of collaborative innovation centre for bioresource comprehensive development in Qinling-Bashan area, Shaanxi Province (QBXT-Z(P)-18-2), and the project of Shaanxi University of Technology (SLGQD2017-16).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Elena Maestri
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Y., Li, C., Ji, X. et al. The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. Environ Sci Pollut Res 27, 15515–15536 (2020). https://doi.org/10.1007/s11356-020-07646-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-020-07646-2