Effect of Ni ion release on the cells in contact with NiTi alloys

Abstract

Nickel-titanium alloys have been used in medical applications for several years; however, biocompatibility of the material remains controversial. In the present study, the human umbilical vein endothelial cells (HUVEC) were cultured in contact with the nitinol used in two different heat treatment  surface modifications—helium and hydrogen. The amount of Ni ions released from these alloys in contact with HUVEC was measured in media and in the cells by ICP-MS. An increased release of Ni ions was detected in He alloy compared with H2 alloy modification with an elevation with the metal exposition duration (24 h vs. 72 h). The cells contained the Ni ions in both selected alloy modifications with the lower levels in H2 alloys. To evaluate the potential of multiple metal applications, similar values were observed in media and in cell suspension for all surface modification combinations. The model analysis of effect of metal ion release on distant cells in the body showed that the concentration is interestingly similar to concentrations in cells in direct contact with the metal alloy. The cells are able to regulate the concentration of Ni ions within the cell. According to our best knowledge, the study for the first time describes the presence of Ni ions released from nitinol directly in the cells. In the case of the H2 modification, the lowest levels of Ni ions were detected both in medium and in the cells, which likely increases the biocompatibility of the nitinol alloy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Balla VK, Banerjee S, Bose S, Bandyopadhyay A (2010) Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater 6(6):2329–2334. https://doi.org/10.1016/j.actbio.2009.11.021

    CAS  Article  Google Scholar 

  2. Bogdanski D, Köller M, Müller D, Muhr G, Bram M, Buchkremer HP, Stöver D, Choi J, Epple M (2002) Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials 23(23):4549–4555

    CAS  Article  Google Scholar 

  3. Carroll WM, Kelly MJ (2003) Corrosion behavior of nitinol wires in body fluid environments. J Biomed Mater Res A 67(4):1123–1130

    CAS  Article  Google Scholar 

  4. Chrzanowski W, Abou Neel EA, Armitage DA, Knowles JC (2008) Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. J Mater Sci Mater Med 19(4):1553–1557

    CAS  Article  Google Scholar 

  5. Clarke B, Carroll W, Rochev Y, Hynes M, Bradley D, Plumley D (2006) Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. J Biomed Mater Res A 79A(1):61–70. https://doi.org/10.1002/jbm.a.30720

    CAS  Article  Google Scholar 

  6. Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3(4):573–585. https://doi.org/10.1016/j.actbio.2006.12.003

    CAS  Article  Google Scholar 

  7. Duerig TW, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160

    Article  Google Scholar 

  8. Es-Souni M, Es-Souni M, Brandies HF (2001) On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys:: NiTi42 and NiTi42Cu7. Biomaterials 22(15):2153–2161. https://doi.org/10.1016/S0142-9612(00)00406-3

    CAS  Article  Google Scholar 

  9. Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49(1):1–15

    CAS  Article  Google Scholar 

  10. Haider W, Munroe N, Tek V, Gill PKS, Tang Y, McGoron AJ (2011) Cytotoxicity of metal ions released from nitinol alloys on endothelial cells. J Mater Eng Perform 20(4–5):816–818. https://doi.org/10.1007/s11665-011-9884-5

    CAS  Article  Google Scholar 

  11. Haider, Waseem. 2010. “Enhanced biocompatibility of NiTi (nitinol) via surface treatment and alloying”

    Book  Google Scholar 

  12. Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24(6):745–752

    Article  Google Scholar 

  13. Jenko M, Godec M, Kocijan A, Rudolf R, Dolinar D, Ovsenik M, Gorenšek M, Mozetic M (2019) A new route to biocompatible nitinol based on a rapid treatment with H2/O2 gaseous plasma. Appl Surf Sci 473:976–984

    CAS  Article  Google Scholar 

  14. Kobayashi S, Ohgoe Y, Ozeki K, Sato K, Sumiya T, Hirakuri KK, Aoki H (2005) Diamond-like carbon coatings on orthodontic archwires. Diam Relat Mater 14(3):1094–1097

    CAS  Article  Google Scholar 

  15. Lešková, Alexandra, Milan Zvarík, Takao Araya, and Ricardo FH Giehl. 2019. “Nickel toxicity targets cell wall-related processes and PIN2-mediated auxin transport to inhibit root elongation and gravitropic responses in Arabidopsis.” Plant Cell Physiol

  16. L’H, Y, F. Rayes, and A. O. Warrak. (2009). “Regulation, orthopedic, dental, endovascular and other applications of Ti–Ni shape memory alloys.” In Shape memory alloys for biomedical applications, 306–326. Elsevier

  17. Lifeng Z, Yan H, Yang D, Xiaoying L, Tingfei X, Deyuan Z, Ying H, Jinfeng Y (2011) The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys. Biomed Mater (Bristol, England) 6(2):25012. https://doi.org/10.1088/1748-6041/6/2/025012

    CAS  Article  Google Scholar 

  18. Lü X, Bao X, Huang Y, Yinghua Q, Lu H, Zuhong L (2009) Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 30(2):141–148. https://doi.org/10.1016/j.biomaterials.2008.09.011

    CAS  Article  Google Scholar 

  19. Monteilh-Zoller MK, Hermosura MC, Nadler MJS, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60

    CAS  Article  Google Scholar 

  20. Muñoz A, Costa M (2012) Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol Appl Pharmacol 260(1):1–16

    Article  Google Scholar 

  21. Nematzadeh F, Sadrnezhaad SK (2012) Effects of material properties on mechanical performance of nitinol stent designed for femoral artery: finite element analysis. Scientia Iranica 19(6):1564–1571

    Article  Google Scholar 

  22. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    CAS  Article  Google Scholar 

  23. Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary Iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52(8):1433–1442

    CAS  Article  Google Scholar 

  24. Okazaki Y, Gotoh E (2008) Metal release from stainless steel, co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corros Sci 50(12):3429–3438

    CAS  Article  Google Scholar 

  25. Pelton, A. R., D. Stöckel, and T. W. Duerig. 2000. “Medical uses of nitinol.” In Materials science forum, 327:63–70. Trans Tech Publ

  26. Pelton, Alan R. 2004. SMST 2003: proceedings of the international conference on shape memory and superelastic technologies. ASM International

  27. Plant SD, Grant DM, Leach L (2005) Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials 26(26):5359–5367. https://doi.org/10.1016/j.biomaterials.2005.01.067

    CAS  Article  Google Scholar 

  28. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Academic press

  29. Rokicki R. (2013). “Method for surface inclusions detection in nitinol which are primary corrosion and fatigue initiation sites and indicators of overall quality of nitinol material.” https://www.google.com/patents/US8377237. Accessed 13 May 2016

  30. Russell SM 2001. SMST-2000: proceedings of the international conference on shape memory and superelastic technologies. ASM International

  31. Ryhänen J, Niemi E, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35(4):451–457. https://doi.org/10.1002/(SICI)1097-4636(19970615)35:4<451::AID-JBM5>3.0.CO;2-G

    Article  Google Scholar 

  32. Ryhänen J (1999) Biocompatibility evaluation of nickel-titanium shape memory metal alloy. University of Oulu, Oulu

    Google Scholar 

  33. Schaaf G, Erenoglu BE, von Wirén N (2004) Physiological and biochemical characterization of metal-phytosiderophore transport in graminaceous species. Soil Sci Plant Nutr 50(7):989–995

    CAS  Article  Google Scholar 

  34. Ševčíková J, Bártková D, Goldbergová M, Kuběnová M, Čermák J, Frenzel J, Weiser A, Dlouhý A (2018) On the Ni-ion release rate from surfaces of binary NiTi shape memory alloys. Appl Surf Sci 427(January):434–443. https://doi.org/10.1016/j.apsusc.2017.08.235

    CAS  Article  Google Scholar 

  35. Sevcikova J, Goldbergova MP (2017) Biocompatibility of NiTi alloys in the cell behaviour. BioMetals 30(2):163–169

    CAS  Article  Google Scholar 

  36. Shabalovskaya S, Anderegg J, Van Humbeeck J (2008) Critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater 4(3):447–467. https://doi.org/10.1016/j.actbio.2008.01.013

    CAS  Article  Google Scholar 

  37. Shabalovskaya S, Rondelli G, James A, Xiong JP, Ming W (2004) Comparative corrosion performance of black oxide, sandblasted, and fine-drawn nitinol wires in potentiodynamic and potentiostatic tests: effects of chemical etching and electropolishing. J Biomed Mater Res B Appl Biomater 69B(2):223–231. https://doi.org/10.1002/jbm.b.30006

    CAS  Article  Google Scholar 

  38. Sheriff, J., A. R. Pelton, and L. A. Pruitt. 2006. “Hydrogen effects on nitinol fatigue.” In SMST-2004: proceedings of the international conference on shape memory and superelastic technologies, 111–6. ASM International

  39. Shih C-C, Lin S-J, Chen Y-L, Yea-Yang S, Lai S-T, Wu GJ, Kwok C-F, Chung K-H (2000) The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J Biomed Mater Res 52(2):395–403. https://doi.org/10.1002/1097-4636(200011)52:2<395::AID-JBM21>3.0.CO;2-B

    CAS  Article  Google Scholar 

  40. Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14(2):292–301

    Article  Google Scholar 

  41. Sui JH, Cai W (2006) Effect of diamond-like carbon (DLC) on the properties of the NiTi alloys. Diam Relat Mater 15(10):1720–1726

    CAS  Article  Google Scholar 

  42. Válková L, Ševčíková J, Goldbergová MP, Weiser A, Dlouhý A (2018) Osteoarthritic process modifies expression response to NiTi alloy presence. J Mater Sci Mater Med 29(9):146

    Article  Google Scholar 

  43. Wataha JC, O’Dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood PE (2001) Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res 58(5):537–544

    CAS  Article  Google Scholar 

  44. Wen X, Wang X, Zhang N (1996) Microrough surface of metallic biomaterials: a literature review. Biomed Mater Eng 6(3):173–189

    CAS  Google Scholar 

  45. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, van Horn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18(16):1115–1120

    CAS  Article  Google Scholar 

  46. Winn B, Derrick Quarles C, Kenneth Marcus R, LaBerge M (2011) Nickel ions inhibit alpha-actin expression and decrease aspect ratio of rat vascular smooth muscle cells in vitro. Metallomics 3(9):934–940. https://doi.org/10.1039/c1mt00035g

    CAS  Article  Google Scholar 

  47. Yang D, Lü X, Hong Y, Xi T, Zhang D (2014) The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function. Biomaterials 35(24):6195–6205. https://doi.org/10.1016/j.biomaterials.2014.04.069

    CAS  Article  Google Scholar 

  48. Yokoyama K’i, Hamada K, Asaoka K (2001) Fracture analysis of hydrogen-charged nickel-titanium superelastic alloy. Mater Trans 42(1):141–144

    CAS  Article  Google Scholar 

  49. Zhang YM, Bataillon-Linez P, Huang P, Zhao YM, Han Y, Traisnel M, Xu KW, Hildebrand HF (2004) Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J Biomed Mater Res Part A 68(2):383–391. https://doi.org/10.1002/jbm.a.20063

    CAS  Article  Google Scholar 

Download references

Funding

This study received financial support from the Czech Science Foundation under the contract no. 15-16336S.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monika Pavkova Goldbergova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The Ni ion release is affected by heat treatment surface modification of NiTi alloy (He vs. H2).

2. Ni ions released from NiTi alloy enter the cells in both surface modifications.

3. Similar level of nickel ions in the cells was detected as effect of medium with metal ions.

4. Cells are able to release and regulate absorbed Ni ions.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veverkova, J., Bartkova, D., Weiser, A. et al. Effect of Ni ion release on the cells in contact with NiTi alloys. Environ Sci Pollut Res 27, 7934–7942 (2020). https://doi.org/10.1007/s11356-019-07506-8

Download citation

Keywords

  • Nitinol
  • Cell
  • Biocompatibility
  • Biomaterial
  • Hydrogen modification