Skip to main content
Log in

Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Dyes are widely used in many industrial sectors, many contain harmful substances to human health, and their release into the environment entails several environmental problems, generating a major worldwide concern as water resources are increasingly limited. The development of cheap and efficient biosorbents that remove these pollutants is of utmost importance. In this study, powdered seeds of the araticum fruit (Annona crassiflora) were used in the biosorption of crystal violet (CV) dye from aqueous solutions and simulated textile effluents. Through the characterization techniques, it can be observed that the material presented an amorphous structure, containing an irregular surface composed mainly by groups containing carbon, hydrogen, and oxygen. CV biosorption was favored at the natural pH of the solution (7.5) for a dosage of 0.7 g L−1 of araticum seed powder. The pseudo-second-order model was the most suitable to represent the biosorption kinetics in the removal of the CV. Biosorption capacity reached equilibrium in the first minutes at the lowest concentrations, and, at the highest, after 120 min. The equilibrium data were well represented by the Langmuir model, with a maximum biosorption capacity of 300.96 mg g−1 at 328 K. Biosorption had a spontaneous and endothermic nature. In the treatment of a simulated effluent, the biosorbent removed 87.8% of the color, proving to be efficient. Therefore, the araticum seeds powder (ASP) can be used as a low-cost material for the treatment of colored effluents containing the crystal violet (CV) dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu Elella MH, Saba MW, El Hafeez EA, Mohamed RR (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int J Biol Macromol 137:1086–1101

    Article  CAS  Google Scholar 

  • Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773

    Article  CAS  Google Scholar 

  • Arruda HS, Pastore GM (2019) Araticum (Annona crassiflora Mart.) as a source of nutrients and bioactive compounds for food and non-food purposes: a comprehensive review. Food Res Int 123:450–480

    Article  CAS  Google Scholar 

  • Arruda HS, Pereira GA, de Morais DR, Eberlin MN, Pastore GM (2018) Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC–ESI–MS/MS. Food Chem 245:738–749

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN (2011) Removal of reactive blue 19 and reactive blue 49 textile dyes by citrus waste biomass from aqueous solution: equilibrium and kinetic study. Can J Chem Eng 90:412–419

    Article  CAS  Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I: General theory J Chem Phys 7:1103–1112

    CAS  Google Scholar 

  • Banerjee K, Ramesh STR, Gandhimathi PV, Nidheesh KS (2012) A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iran J Energ Environ 3:143–156

    Google Scholar 

  • Barka N, Abdennouri M, Makhfouk ME (2011) Removal of methylene blue and Eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem Eng 42:320–326

  • Borah L, Goswami M, Phukan P (2015) Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: adsorption equilibrium, kinetics and thermodynamics study. J Environ Chem Eng 3:1018–1028

    Article  CAS  Google Scholar 

  • Cheruiyot GK, Wanyonyi WC, Kiplimo JJ, Maina EN (2019) Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Sci African 5:e00116

    Article  Google Scholar 

  • Dali Youcef L, Belaroui LS, López-Galindo A (2019) Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Appl Clay Sci 179:105145

    Article  CAS  Google Scholar 

  • Enniya I, Rghioui L, Jourani A (2018) Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm 7:9–16

    Article  Google Scholar 

  • Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Ismadji S (2017) Removal of crystal violet dye by adsorption using bentonite–alginate composite. J Environ Chem Eng 5:5677–5687

    Article  CAS  Google Scholar 

  • Franco DSP, Tanabe EH, Dotto GL (2017) Continuous adsorption of a cationic dye on surface modified rice husk: statistical optimization and dynamic models. Chem Eng Commun 204:625–634

    Article  CAS  Google Scholar 

  • Gao H, Zhao S, Cheng X, Wang X, Zheng L (2013) Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem Eng J 223:84–90

    Article  CAS  Google Scholar 

  • Georgin J, Dotto GL, Mazutti MA, Foletto EL (2016) Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation–pyrolysis to remove organic dyes from aqueous solutions. J Environ Chem Eng 4:266–275

    Article  CAS  Google Scholar 

  • Georgin J, Drumm FC, Grassi P, Franco D, Allasia D, Dotto GL (2018a) Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents. Water Sci Technol 78:1693–1703

    Article  CAS  Google Scholar 

  • Georgin J, Marques BS, Peres EC, Allasia D, Dotto GL (2018b) Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Sci Technol 77:1612–1621

    Article  CAS  Google Scholar 

  • Georgin J, Franco DSP, Grassi P, Tonato D, Piccilli DGA, Meili L, Dotto GL (2019) Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207–19219

    Article  CAS  Google Scholar 

  • Ghazali A, Shirani M, Semnani A, Zare–Shahabadi V, Nekoeinia M (2018) Optimization of crystal violet adsorption onto. Date palm leaves as a potent biosorbent from aqueous solutions using response surface methodology and ant colony J Environ Chem Eng 6:3942–3950

  • Gholami M, Vardini MT, Mahdavinia GR (2016) Investigation of the effect of magnetic particles on the crystal violet adsorption onto a novel nanocomposite based on κ–carrageenan–g–poly (methacrylic acid). Carbohydr Polym 136:772–781

    Article  CAS  Google Scholar 

  • Gopi S, Pius A, Thomas S (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Proc Eng 14:1–8

    Article  Google Scholar 

  • Güzel F, Sayğılı H, Akkaya Sayğılı G, Koyuncu F (2015) New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: characterization, equilibrium and kinetic modeling. J Mol Liq 206:244–255

    Article  CAS  Google Scholar 

  • Hameed BH, Tan IAW, Ahmad AL (2008) Adsorption isotherm, kinetic modeling and mechanism of 2,4,6–trichlorophenol on coconut husk–based activated carbon. Chem Eng J 144:235–244

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Proc Safety Environ Protect 76:183–191

    Article  CAS  Google Scholar 

  • Karimi R, Yousefi F, Ghaedi M, Rezaee Z (2019) Comparison the behavior of ZnO-NP-AC and Na, K doped ZnO-NP-AC for simultaneous removal of Crystal Violet and Quinoline Yellow dyes: modeling and optimization. Polyhedron 170:60–69

    Article  CAS  Google Scholar 

  • Khan AR, Al-Waheab IR, Al-Haddad A (1996) A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution. Environ Technol 17:13–23

    Article  CAS  Google Scholar 

  • Kilic M, Apaydin-Varol E, Pütün AE (2011) Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J Hazard Mater 189:397–403

    Article  CAS  Google Scholar 

  • Kumari HJ, Krishnamoorthy P, Arumugam TK, Radhakrishnan S, Vasudevan D (2017) An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/chitosan composite: a novel low cost adsorbent. Int J Biol Macromol 96:324–333

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kung Svenska Vetenskap 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Amer Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li FT, Yang H, Zhao Y, Xu R (2007) Novel modified pectin for heavy metal adsorption. Chin Chem Lett 18:325–328

    Article  CAS  Google Scholar 

  • Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  • Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem Eng J 38:390–394

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473

    Article  CAS  Google Scholar 

  • Mohanty K, Naidu JT, Meikap BC, Biswas MN (2006) Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res 45:5165–5171

    Article  CAS  Google Scholar 

  • Moubarak FR, Atmani R, Maghri MI, Elkouali M, Talbi M, Bouamrani ML, Salouhi M, Kenz A (2014) Elimination of methylene blue dye with natural adsorbent “banana peels powder”. Glob J Sci Front Res B Chem 14:39–44

    Google Scholar 

  • Muthukumaran C, Sivakumar VM, Thirumarimurugan M (2016) Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J Taiwan Inst Chem Eng 63:354–362

    Article  CAS  Google Scholar 

  • Öktem Y, Pozan Soylu G, Aytan N (2012) The adsorption of methylene blue from aqueous solution by using waste potato peels: equilibrium and kinetic studies. J Sci Ind Res 71:817–882

    Google Scholar 

  • Omer OS, Hussein MA, Hussein BHM, Mgaidi A (2018) Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arab J Chem 11:615–623

    Article  CAS  Google Scholar 

  • Sabna V, Thampi SG, Chandrakaran S (2016) Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicol Environ Saf 134:390–397

    Article  CAS  Google Scholar 

  • Salem NM, Awwad AM (2014) Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. J Saudi Chem Soc 18:379–386

    Article  CAS  Google Scholar 

  • Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    Article  CAS  Google Scholar 

  • Samal K, Raj N, Mohanty K (2018) Saponin extracted waste biomass of Sapindus mukorossi for adsorption of methyl violet dye in aqueous system. Surf Interfaces 14:166–174

    Article  CAS  Google Scholar 

  • Sarma GK, Sen Gupta S, Bhattacharyya KG (2016) Adsorption of crystal violet on raw and acid–treated montmorillonite, K10, in aqueous suspension. J Environ Manag 171:1–10

    Article  CAS  Google Scholar 

  • Shakoor S, Nasar A (2018) Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Ground Sust Develop 7:30–38

    Article  Google Scholar 

  • Soares FP, Paiva R, Nogueira RC, Stein VC, Santana JRF (2009) Marolo: a native fruit of the Brazilian Cerrado region. Braz Gov Tech Bull 82:1–17

    Google Scholar 

  • Tahir N, Bhatti HN, Iqbal M, Noreen S (2017) Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 94:210–220

    Article  CAS  Google Scholar 

  • Tian G, Wang W, Kang Y, Wang A (2016) Ammonium sulfide–assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet. J Environ Sci 41:33–43

    Article  CAS  Google Scholar 

  • Tóth J (2000) Calculation of the BET–compatible surface area from any type I isotherms measured above the critical temperature. J Colloid Interface Sci 225:378–383

    Article  Google Scholar 

  • Uddin MT, Rahman MA, Rukanuzzaman M, Islam MA (2017) A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl Water Sci 7:2831–2842

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low–cost biosorbent. Desalination 265:126–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcos L. S. Oliveira or Guilherme L. Dotto.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, D.S.P., Georgin, J., Drumm, F.C. et al. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ Sci Pollut Res 27, 11184–11194 (2020). https://doi.org/10.1007/s11356-019-07490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07490-z

Keywords

Navigation