Anthropogenic mercury contamination in sediments of Krka River estuary (Croatia)

Abstract

Coastal and estuarine sediments play an important role in the biogeochemical cycle of mercury (Hg) in the aquatic environment. When contaminated, sediments can act as a potential source of Hg and may pose a long-term risk to aquatic biota. The aim of this research was to assess spatial and historical distribution of Hg in the sediments of the Krka River estuary, an environment that so far has been regarded as relatively unpolluted. To achieve this goal, 40 surface sediment samples and 7 sediment cores were collected along the entire estuary. Hg concentrations in the surface and deep sediments of the Krka River estuary were found in a broad range 0.042–57.8 mg kg−1, demonstrating significant spatial and temporal differences in Hg input to the estuarine sediments. Two distinct areas were distinguished; upper estuary where the Hg content was comparable to other unpolluted Adriatic sediments, and the lower estuary where sediment profiles reflected the history of anthropogenic Hg input associated with the city of Šibenik. The vertical Hg profile from the most affected area of the estuary, combined with 210Pb and 137Cs dating, demonstrated that a significant increase of Hg input started in late 1940s/early 1950s, mainly related to shipyard activities. This study provided more insight on the Hg concentration in the Krka River estuary, demonstrating that the high values obtained, although localized, were comparable to the ones found in some of the most contaminated sites in the Mediterranean.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bilinski H, Kozar S, Plavšić M, Kwokal Z, Branica M (1991) Trace-metal adsorption on inorganic solid-phases under estuarine conditions. Mar Chem 32:225–233. https://doi.org/10.1016/0304-4203(91)90040-4

    CAS  Article  Google Scholar 

  2. Bilinski H, Kwokal Z, Branica M (1992) Processes affecting the fate of mercury in the Krka River estuary. Water Res 26:1243–1253. https://doi.org/10.1016/0043-1354(92)90185-7

    CAS  Article  Google Scholar 

  3. Bogner D, Ujević I, Zvonarić T, Barić A (2004) Distribution of selected trace metals in coastal surface sediments from the middle and south Adriatic Sea Fresen. Environ Bull 13:1281–1287

    CAS  Google Scholar 

  4. Burton GA Jr (2002) Sediment quality criteria in use around the world. Limnology 3:65–76. https://doi.org/10.1007/s102010200008

    CAS  Article  Google Scholar 

  5. Canário J, Vale C, Caetano M (2005) Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 50:1142–1145. https://doi.org/10.1016/j.marpolbul.2005.06.052

    CAS  Article  Google Scholar 

  6. Canário J, Prego R, Vale C, Branco V (2007) Distribution of mercury and monomethylmercury in sediments of Vigo Ria , NW Iberian Peninsula Water. Air Soil Poll 182:21–29. https://doi.org/10.1007/s11270-006-9317-5

    CAS  Article  Google Scholar 

  7. Cardellicchio N, Buccolieri A, Di Leo A, Spada L (2006) Heavy metals in marine sediments from the mar piccolo of Taranto (Ionian Sea, Southern Italy). Ann Chim-Rome 96:727–741. https://doi.org/10.1002/adic.200690075

    CAS  Article  Google Scholar 

  8. Celebi UB, Vardar N (2008) Investigation of VOC emissions from indoor and outdoor painting processes in shipyards. Atmos Environ 42:5685–5695. https://doi.org/10.1016/j.atmosenv.2008.03.003

    CAS  Article  Google Scholar 

  9. Cesário R, Monteiro CE, Nogueira M, O’Driscoll NJ, Caetano M, Hintelmann H, Mota AM, Canário J (2016) Mercury and methylmercury dynamics in sediments on a protected area of Tagus Estuary (Portugal). Water Air Soil Pollut 227:475. https://doi.org/10.1007/s11270-016-3179-2

    CAS  Article  Google Scholar 

  10. Cesário R, Hintelmann H, O’Driscoll NJ, Monteiro CE, Cetano M, Nogueira M, Mota AM, Canário J (2017a) Biogeochemical cycle of mercury and methylmercury in two highly contaminated areas of Tagus Estuary (Portugal). Water Air Soil Pollut 228:257. https://doi.org/10.1007/s11270-017-3442-1

    CAS  Article  Google Scholar 

  11. Cesário R, Poissant L, Pilote M, O’Driscoll NJ, Moya AM, Canário J (2017b) Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments. Sci Total Environ 603-604:279–289. https://doi.org/10.1016/j.scitotenv.2017.06.093

    CAS  Article  Google Scholar 

  12. Chapman PM, Wang FY (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22. https://doi.org/10.1002/etc.5620200102

    CAS  Article  Google Scholar 

  13. Chatterjee M, Canário J, Sarkar SK, Branco V, Bhattacharya AK, Satpathy KK (2009) Mercury enrichments in core sediments in Hugli-Matla-Bidyadhari estuarine complex, north-eastern part of the Bay of Bengal and their ecotoxicological significance. Environ Geol 57:1125–1134. https://doi.org/10.1007/s00254-008-1404-z

    CAS  Article  Google Scholar 

  14. Chiu SW, Ho KM, Chan SS, So OM, Lai KH (2006) Characterization of contamination in and toxicities of a shipyard area in Hong Kong. Environ Pollut 142:512–520. https://doi.org/10.1016/j.envpol.2005.10.038

    CAS  Article  Google Scholar 

  15. Cindrić AM, Garnier C, Oursel B, Pižeta I, Omanović D (2015) Evidencing the natural and anthropogenic processes controlling trace metals dynamic in a highly stratified estuary: the Krka River estuary (Adriatic, Croatia). Mar Pollut Bull 94:199–216. https://doi.org/10.1016/j.marpolbul.2015.02.029

    CAS  Article  Google Scholar 

  16. Covelli S, Faganeli J, Horvat M, Brambati A (2001) Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic Sea). Appl Geochem 16:541–558. https://doi.org/10.1016/S0883-2927(00)00042-1

    CAS  Article  Google Scholar 

  17. Covelli S, Fontolan G, Faganeli J, Ogrinc N (2006) Anthropogenic markers in the Holocene stratigraphic sequence of the Gulf of Trieste (northern Adriatic Sea). Mar Geol 230:29–51. https://doi.org/10.1016/j.margeo.2006.03.013

    Article  Google Scholar 

  18. Covelli S, Langone L, Acquavita A, Piani R, Emili A (2012) Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea). Estuar Coast Shelf S 113:7–19. https://doi.org/10.1016/j.ecss.2011.12.038

    CAS  Article  Google Scholar 

  19. Cuculić V, Cukrov N, Kwokal Z, Mlakar M (2009) Natural and anthropogenic sources of Hg, Cd, Pb, Cu and Zn in seawater and sediment of Mljet National Park, Croatia. Estuar Coast Shelf S 81:311–320. https://doi.org/10.1016/j.ecss.2008.11.006

    CAS  Article  Google Scholar 

  20. Cukrov N (2006) Krka River estuary, trap for radionuclides. Dissertation, University of Zagreb (in Croatian)

  21. Cukrov N, Barišić D (2006) Spatial distribution of K-40 and Th-232 in recent sediments of the Krka River estuary. Croat Chem Acta 79:115–118

    CAS  Google Scholar 

  22. Cukrov N, Barišić D, Juračić M (2007) Calculated sedimentation rate in the Krka River Estruary using vertical Diostribution of 137Cs. In: CIESM congress Rapp. Comm Int Mer Médit 38:81

  23. Cukrov N, Frančišković-Bilinski S, Mikac N, Roje V (2008) Natural and anthropogenic influences recorded in sediments from the Krka river estuary (eastern Adriatic coast), evaluated by statistical methods. Fresen Environ Bull 17:855–863

    CAS  Google Scholar 

  24. Cukrov N, Mlakar M, Cuculić V, Barišić D (2009) Origin and transport of U-238 and Ra-226 in riverine, estuarine and marine sediments of the Krka River. Croatia J Environ Radioactiv 100:497–504. https://doi.org/10.1016/j.jenvrad.2009.03.012

    CAS  Article  Google Scholar 

  25. Cukrov N, Frančišković-Bilinski S, Hlača B, Barišić D (2011) A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia. Mar Pollut Bull 62:154–167. https://doi.org/10.1016/j.marpolbul.2010.08.020

    CAS  Article  Google Scholar 

  26. Cukrov N, Frančišković-Bilinski S, Bogner D (2014) Metal contamination recorded in the sediment of the semi-closed Bakar Bay (Croatia). Environ Geochem Hlth 36:195–208. https://doi.org/10.1007/s10653-013-9558-3

    CAS  Article  Google Scholar 

  27. Di Leonardo R, Tranchida G, Bellanca A, Neri R, Angelone M, Mazzola S (2006) Mercury levels in sediments of central Mediterranean Sea: a 150+ year record from box-cores recovered in the Strait of Sicily chemosphere 65:2366-2376. https://doi.org/10.1016/j.chemosphere.2006.04.076

    Article  Google Scholar 

  28. Duan LQ, Song JM, Yu Y, Yuan HM, Li XG, Li N (2015) Spatial variation, fractionation and sedimentary records of mercury in the East China Sea. Mar Pollut Bull 101:434–441. https://doi.org/10.1016/j.marpolbul.2015.09.050

    CAS  Article  Google Scholar 

  29. Emili A, Acquavita A, Covelli S, Spada L, Di Leo A, Giandomenico S, Cardellicchio N (2016) Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto’s Mar Piccolo (Ionian Sea, Southern Italy) environ Sci Pollut R 23:12582-12595. https://doi.org/10.1007/s11356-015-5281-1

    Article  Google Scholar 

  30. Fabbri D, Felisatti O, Lombardo M, Trombini C, Vassura I (1998) The lagoon of Ravenna (Italy): characterisation of mercury-contaminated sediments. Sci Total Environ 213:121–128. https://doi.org/10.1016/S0048-9697(98)00083-7

    CAS  Article  Google Scholar 

  31. Fairey R, Roberts C, Jacobi M, Lamerdin S, Clark R, Downing J, Long E, Hunt J, Anderson B, Newman J, Tjeerdema R, Stephenson M, Wilson C (1998) Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA. Environ Toxicol Chem 17:1570–1581. https://doi.org/10.1002/etc.5620170819

    CAS  Article  Google Scholar 

  32. Gagnon C, Pelletier E, Mucci A (1997) Behaviour of anthropogenic mercury in coastal marine sediments. Mar Chem 59:159–176. https://doi.org/10.1016/S0304-4203(97)00071-6

    CAS  Article  Google Scholar 

  33. Gao B, Han LF, Hao H, Zhou HD (2016) Pollution characteristics of mercury (Hg) in surface sediments of major basins. China Ecol Indic 67:577–585. https://doi.org/10.1016/j.ecolind.2016.03.031

    CAS  Article  Google Scholar 

  34. García-Ordiales E, Esbrí JM, Covelli S, López-Berdonces MA, Higueras PL, Loredo J (2016) Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). Environ Sci Pollut R 23:6024–6038. https://doi.org/10.1007/s11356-015-4770-6

    CAS  Article  Google Scholar 

  35. Jin HF, Liebezeit G, Ziehe D (2012) Distribution of total mercury in surface sediments of the Western Jade Bay, Lower Saxonian Wadden Sea, Southern North Sea. B Environ Contam Tox 88:597–604. https://doi.org/10.1007/s00128-012-0530-1

    CAS  Article  Google Scholar 

  36. Juračić M, Pravdić V (1991) The role of suspended matter in assessing the assimilative capacity case study of two estuaries in the Adriatic Sea. Chemistry and Ecology 5:241–248. https://doi.org/10.1080/02757549108035253

    Article  Google Scholar 

  37. Kennish MJ (1994) Pollution in estuaries and coastal marine waters. J Coastal Res Special Issue 12:27–49

    Google Scholar 

  38. Kwokal Z, Frančišković-Bilinski S, Bilinski H, Branica M (2002) A comparison of anthropogenic mercury pollution in Kaštela Bay (Croatia) with pristine estuaries in Öre (Sweden) and Krka (Croatia). Mar Pollut Bull 44:1152–1157. https://doi.org/10.1016/S0025-326X(02)00134-0

    CAS  Article  Google Scholar 

  39. Long ER, Macdonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97. https://doi.org/10.1007/Bf02472006

    Article  Google Scholar 

  40. Looi LJ, Aris AZ, Yusoff FM, Hashim Z (2015) Mercury contamination in the estuaries and coastal sediments of the Strait of Malacca Environmental monitoring and assessment 187:4099. https://doi.org/10.1007/s10661-014-4099-5

  41. Martinčić D, Kwokal Z, Stoeppler M, Branica M (1989) Trace-metals in sediments from the Adriatic Sea Sci Total Environ 84:135–147. https://doi.org/10.1016/0048-9697(89)90378-1

    Article  Google Scholar 

  42. Martinčić D, Kwokal Z, Branica M (1990) Distribution of zinc, lead, cadmium and copper between different size fractions of sediments II. The Krka River estuary and the Kornati-Islands (central Adriatic Sea). Sci Total Environ 95:217–225. https://doi.org/10.1016/0048-9697(90)90066-4

    Article  Google Scholar 

  43. Mikac N, Kwokal Z (1997) Distribution of mercury species in the water column of the stratified Krka River Estuary. Croat Chem Acta 70:271–288

    CAS  Google Scholar 

  44. Mikac N, Kwokal Z, May K, Branica M (1989) Mercury distribution in the Krka River estuary (Eastern Adriatic Coast). Mar Chem 28:109–126. https://doi.org/10.1016/0304-4203(89)90190-4

    CAS  Article  Google Scholar 

  45. Mikac N, Kwokal Z, Martinčić D, Branica M (1996) Uptake of mercury species by transplanted mussels under estuarine conditions (Krka river estuary). Sci Total Environ 184:173–182. https://doi.org/10.1016/0048-9697(96)05078-4

    CAS  Article  Google Scholar 

  46. Mikac N, Niessen S, Ouddane B, Wartel M (1999) Speciation of mercury in sediments of the Seine estuary (France). Appl Organomet Chem 13:715–725. https://doi.org/10.1002/(SICI)1099-0739(199910)13:10<715::AID-AOC918>3.0.CO;2-4

    CAS  Article  Google Scholar 

  47. Mikac N, Roje V, Cukrov N, Foucher D (2006) Mercury in aquatic sediments and soils from Croatia Arhiv za higijenu rada i toksikologiju 57:325

  48. OECD (2010) Environmental and climate change issues in the shipbuilding industry. Organisation for Economic Co-operation and Development

  49. Prohić E, Juračić M (1989) Heavy-metals in sediments - problems concerning determination of the anthropogenic influence - study in the Krka River estuary. Eastern Adriatic Coast, Yugoslavia Environ Geol Water S 13:145–151. https://doi.org/10.1007/BF01664699

    Article  Google Scholar 

  50. Rahman A, Karim MM (2015) Green shipbuilding and recycling: issues and challenges International. Journal of Environmental Science and Development 6:838. https://doi.org/10.7763/IJESD.2015.V6.709

    CAS  Article  Google Scholar 

  51. Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2006) Mercury cycling between the water column and surface sediments in a contaminated area. Water Res 40:2893–2900. https://doi.org/10.1016/j.watres.2006.05.023

    CAS  Article  Google Scholar 

  52. Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environmental Science & Technology 28:2233–2241. https://doi.org/10.1021/es00062a006

    CAS  Article  Google Scholar 

  53. Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu JO (ed) Biogeochemistry of lead in the environment. Elsevier Scientific, Amsterdam, pp 285–393

    Google Scholar 

  54. Saulnier I, Mucci A (2000) Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord. Canada Appl Geochem 15:191–210. https://doi.org/10.1016/S0883-2927(99)00034-7

    CAS  Article  Google Scholar 

  55. Shi XM, Mason RP, Charette MA, Mazrui NM, Cai PH (2018) Mercury flux from salt marsh sediments: insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim Cosmochim Ac 222:569–583. https://doi.org/10.1016/j.gca.2017.10.033

    CAS  Article  Google Scholar 

  56. Song ZC, Li P, Ding L, Li ZG, Zhu W, He TR, Feng XB (2018) Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. J Geochem Explor 194:81–87. https://doi.org/10.1016/j.gexplo.2018.07.017

    CAS  Article  Google Scholar 

  57. Sprovieri M, Feo ML, Prevedello L, Manta DS, Sammartino S, Tamburrino S, Marsella E (2007) Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (Southern Italy). Chemosphere 67:998–1009. https://doi.org/10.1016/j.chemosphere.2006.10.055

    CAS  Article  Google Scholar 

  58. Stupar YV, Schafer J, Garcia MG, Schmidt S, Piovano E, Blanc G, Huneau F, Le Coustumer P (2014) Historical mercury trends recorded in sediments from the Laguna del Plata Cordoba, Argentina. Chem Erde-Geochem 74:353–363. https://doi.org/10.1016/j.chemer.2013.11.002

    CAS  Article  Google Scholar 

  59. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream Oahu, Hawaii. Environ Geol 39:611–627. https://doi.org/10.1007/s002540050473

    CAS  Article  Google Scholar 

  60. Tankere-Muller S, Zhang H, Davison W, Finke N, Larsen O, Stahl H, Glud RN (2007) Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment. Mar Chem 106:192–207. https://doi.org/10.1016/j.marchem.2006.04.005

    CAS  Article  Google Scholar 

  61. Tessier E, Garnier C, Mullot JU, Lenoble V, Arnaud M, Raynaud M, Mounier S (2011) Study of the spatial and historical distribution of sediment inorganic contamination in the Toulon bay (France). Mar Pollut Bull 62:2075–2086. https://doi.org/10.1016/j.marpolbul.2011.07.022

    CAS  Article  Google Scholar 

  62. UNEP (2013) Global mercury assessment 2013: sources, emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland

  63. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

    CAS  Article  Google Scholar 

  64. Wu FC, Xu LB, Liao HQ, Guo F, Zhao XL, Giesy JP (2013) Relationship between mercury and organic carbon in sediment cores from lakes Qinghai and Chenghai, China. J Soil Sediment 13:1084–1092. https://doi.org/10.1007/s11368-013-0694-2

    CAS  Article  Google Scholar 

  65. Zhang LP, Ye X, Feng H, Jing YH, Ouyang T, Yu XT, Liang RY, Gao CT, Chen WQ (2007) Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Mar Pollut Bull 54:974–982. https://doi.org/10.1016/j.marpolbul.2007.02.010

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Public Institute Nature of Šibenik-Knin County for the use of the boat for the sampling and to Xiaogang Chen, Jasmin Pađan and Domagoj Živković for assistance with sampling.

Funding

This work has been supported by Croatian Science Foundation under the project IP-2014-09-7530 (MEBTRACE) and by the French Government through short term internship grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neven Cukrov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Severine Le Faucheur

Electronic supplementary material

ESM 1

(XLSX 12 kb)

ESM 2

(XLSX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cukrov, N., Doumandji, N., Garnier, C. et al. Anthropogenic mercury contamination in sediments of Krka River estuary (Croatia). Environ Sci Pollut Res 27, 7628–7638 (2020). https://doi.org/10.1007/s11356-019-07475-y

Download citation

Keywords

  • Mercury
  • Sediment
  • Pollution assessment
  • Geochronology
  • Krka River estuary
  • Adriatic Sea