Skip to main content
Log in

Evaluation of particle penetration factors based on indoor PM2.5 removal by an air cleaner

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The particle penetration factor is an important parameter to determine the concentration of indoor particles. In this paper, a mathematical model for calculating this parameter was established by combining with the decay of the indoor PM2.5 and CO2 concentrations measured in a bedroom with an air cleaner. The convergence of the penetration factors was analyzed under different working conditions. The results show that the particle penetration factors converge to stable values within the range of 0.69 to 0.84 close to the value from the empirical formula when the indoor PM2.5 concentration decays to stable values. When the role of particle deposition is ignored, the penetration factors at the low and middle airflow modes are 0.78 and 0.69, respectively. The particle penetration factors are mainly determined by the clean air delivery rate (CADR) of the air cleaner, clearance airflow, and I/O ratio during the balanced phase when the roles of indoor particle deposition and exfiltration can be ignored. This work can provide a convenient method for the calculation of the particle penetration factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abadie M, Limam K, Allard F (2001) Indoor particle pollution: effect of wall textures on particle deposition. Build Environ 36:821–827

    Article  Google Scholar 

  • Bennett DH, Koutrakis P (2006) Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. J Aerosol Sci 37(6):766–785

    Article  CAS  Google Scholar 

  • Braniš M, Rezacova P, Domasova M (2005) The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environ Res 99(2):143–149

    Article  Google Scholar 

  • Chen C, Zhao B (2011) Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos Environ 45(2):275–288

    Article  CAS  Google Scholar 

  • Chen S, Levine MD, Li HY, Yowargana P, Xie LN (2012a) Measured air tightness performance of residential buildings in North China and its influence on district space heating energy use. Energ Buildings 51:157–164

    Article  Google Scholar 

  • Chen C, Zhao B, Zhou W, Zhou WT, Jiang XY, Tan ZC (2012b) A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Build Environ 47:339–348

    Article  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3rd, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study. Lancet 389(10082):1907–1918

    Article  Google Scholar 

  • Hamdani S, Limam K, Abadie MO, Bendou A (2008) Deposition of fine particles on building internal surfaces. Atmos Environ 42(39):8893–8901

    Article  Google Scholar 

  • He BJ (2019) Towards the next generation of green building for urban heat island mitigation: zero UHI impact building. Sustain Cities Soc 101647

  • He CR, Morawska L, Gilbert D (2005) Particle deposition rates in residential houses. Atmos Environ 39(21):3891–3899

    Article  CAS  Google Scholar 

  • He BJ, Zhao DX, Zhu J, Darko A, Gou ZH (2018) Promoting and implementing urban sustainability in China: an integration of sustainable initiatives at different urban scales. Habitat Int 82:83–93

    Article  Google Scholar 

  • Ho KF, Ho SSH, Huang RJ, Chuang HC, Cao JJ, Han YM et al (2016) Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China. Atmos Environ 126:162–170

    Article  CAS  Google Scholar 

  • Jenkins PL, Phillips TJ, Mulberg EJ, Hui SP (1992) Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmos Environ 26(12):2141–2148

    Article  Google Scholar 

  • Ji WJ, Zhao B (2015) Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: a model-based estimation. Build Environ 90:196–205

    Article  Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252

    Article  CAS  Google Scholar 

  • Lai AC (2002) Particle deposition indoors: a review. Indoor Air 12(4):211–214

    Article  CAS  Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer M, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck O, Yadama GN, Yumkella K, Zhong M (2018) The lancet commission on pollution and health. Lancet 391(10119):462–512

    Article  Google Scholar 

  • Li Y (2003) A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations. Atmos Environ 37(30):4277–4285

    Article  CAS  Google Scholar 

  • Liu D, Nazaroff WW (2001) Modeling pollutant penetration across building envelopes. Atmos Environ 35(26):4451–4462

    Article  CAS  Google Scholar 

  • Liu C, Yang JY, Ji SY, Lu YX, Wu PC, Chen C (2018) Influence of natural ventilation rate on indoor PM2.5 deposition. Build Environ 144:357–364

    Article  Google Scholar 

  • Maleki H, Sorooshian A, Goudarzi G, Baboil Z, Tahmasebi Birgani Y, Rahmati M (2019) Air pollution prediction by using an artificial neural network model. Clean Techn Environ Policy 21:1341–1352

    Article  CAS  Google Scholar 

  • Mleczkowska A, Strojecki M, Bratasz L, Kozlowski R (2016) Particle penetration and deposition inside historical churches. Build Environ 95:291–298

    Article  Google Scholar 

  • Naddafi K, Hassanvand MS, Yunesian M, Momeniha F (2012) Health impact assessment of air pollution in megacity of Tehran. Iran Iran J Environ Healt 9(1):28

    Article  Google Scholar 

  • Ni PY, Bai L, Wang XL, Jin HC, Xi GN (2018a) Effect of window ventilation and air cleaner purification on indoor PM2.5 emission and air exchange rate under haze weather. Fresenius Environ Bull 27(1):210–214

    CAS  Google Scholar 

  • Ni PY, Jin HC, Wang XL, Xi GN (2018b, Int. J. Environ. Sci. Technol) A new method for measurement of air change rate based on indoor PM2.5 removal. 15(12):2561–2568

  • Nomura Y, Hopke PK, Fitzgerald B, Mesbah B (1997) Deposition of particles in a chamber as a function of ventilation rate. Aerosol Sci Technol 27(1):62–72

    Article  CAS  Google Scholar 

  • Pereira ML, Graudenz G, Tribess A, Morawska L (2009) Determination of particle concentration in the breathing zone for four different types of office ventilation systems. Build Environ 44(5):904–911

    Article  Google Scholar 

  • Persily AK (2014) Field measurement of ventilation rates. Indoor Air 26(1):97–111

    Article  Google Scholar 

  • Riley WJ, Mckone TE, Lai AC, Nazaroff WW (2002) Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. Environ Sci Technol 36(2):200–207

    Article  CAS  Google Scholar 

  • Rim D, Wallace L, Persily A (2010) Infiltration of outdoor ultrafine particles into a test house. Environ Sci Technol 44(15):5908–5913

    Article  CAS  Google Scholar 

  • Teitel M, Ziskind G, Liran O, Dubovsky V, Letan R (2008) Effect of wind direction on greenhouse ventilation rate, airflow patterns and temperature distributions. Biosyst Eng 101(3):351–369

    Article  Google Scholar 

  • Tian LW, Zhang GQ, Lin YL, Yu JH, Zhou J, Zhang Q (2009) Mathematical model of particle penetration through smooth/rough building envelop leakages. Build Environ 44(6):1144–1149

    Article  Google Scholar 

  • Tung TCW, Chao CYH, Burnett J (1999) A methodology to investigate the particulate penetration factor through building shell. Atmos Environ 33(6):881–893

    Article  CAS  Google Scholar 

  • Wang YF, Chen C, Chen ZG, Wan YL, Zhao L (2016) The evaluation model of PM2.5 penetration and deposition based on the air infiltration through the window gaps. China Environ Sci 36(7):1960–1966

    Google Scholar 

  • Yang XX, Wei P, Feng LH (2012) Atmospheric particulate matter PM2.5 and its damage. Front. Sci. 6(11):22–31

    Google Scholar 

  • Zhao H, Stephens B (2017) Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences. Indoor Air 27:218–229

    Article  CAS  Google Scholar 

  • Zhao B, Wu J (2007) Particle deposition in indoor environments: analysis of influencing factors. J Hazard Mater 147:439–448

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFE0116100) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX19_2052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyong Ni.

Additional information

Responsible Editor: Marcus Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Ni, P., Xi, G. et al. Evaluation of particle penetration factors based on indoor PM2.5 removal by an air cleaner. Environ Sci Pollut Res 27, 8395–8405 (2020). https://doi.org/10.1007/s11356-019-07471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07471-2

Keywords