Skip to main content

Advertisement

Log in

A Bayesian network approach for the identification of relationships between drivers of chlordecone bioaccumulation in plants

  • Environmental and human health issues related to long term contamination by chlordecone in the French West Indies
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants were sampled from four different types of chlordecone-contaminated land in Guadeloupe (West Indies). The objective was to investigate the importance of biological and agri-environmental parameters in the ability of plants to bioaccumulate chlordecone. Among the plant traits studied, only the growth habit significantly affected chlordecone transfer, since prostrate plants concentrated more chlordecone than erect plants. In addition, intensification of land use has led to a significant increase in the amount of chlordecone absorbed by plants. The use of Bayesian networks uncovers some hypothesis and identifies paths for reflection and possible studies to identify and quantify relationships that explain our data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilera PA, Fernández A, Fernández R, Rumí R, Salmerón A (2011) Bayesian networks in environmental modelling. Environ Model Softw 26(12):1376–1388

    Article  Google Scholar 

  • Babyak MA (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med 66(3):411–421

    Google Scholar 

  • Barriuso E, Houot S, Serra-Wittling C (1997) Influence of compost addition to soil on the behaviour of herbicides. Pestic Sci 49(1):65–75

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2008). Principles of soil conservation and management. Springer Netherland. ISBN 978-1-4020-8708-0, 620 pp.

  • Cabidoche YM, Clermont-Dauphin C, Lafont A, Sansoulet J, Cattan P, Achard R, Caron A, Chabrier C (2006) Stockage dans les sols à charges variables et dissipation dans les eaux de zoocides organochlorés autrefois appliqués en bananeraies aux Antilles: relation avec les systèmes de culture. Ministère de l’Ecologie et du Développement Durable, p. 100

  • Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin, C, Massat F, Sansoulet J (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue. Environ Pollut 157:1697–1705

  • Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of harvested organs in root crops grown on chlordecone polluted soils. Pedosphere 22(4):562–571

    Article  CAS  Google Scholar 

  • Chaussonnerie S, Saaidi PL, Ugarte E et al (2016) Microbial degradation of a recalcitrant pesticide : chlordecone. Front Microbiol 7:2025–2037

    Article  Google Scholar 

  • Clostre F, Lesueur-Jannoyer M, Achard R, Letourmy P, Cabidoche YM, Cattan P (2014) Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution. Environ Sci Pollut Res 21(3):1980–1992

    Article  CAS  Google Scholar 

  • Clostre F, Letourmy P, Lesueur-Jannoyer M (2015) Organochlorine (chlordecone) uptake by root vegetables. Chemosphere 118:96–102

    Article  Google Scholar 

  • Collas C, Mahieu M, Tricheur A, Crini N, Badot P-M, Archimède H, Rychen G, Feidt C, Jurjanz S (2019) Cattle exposure to chlordecone through soil intake. The case-study of tropical grazing practices in the French West Indies. Sci Total Environ 668:161–170. https://doi.org/10.1016/j.scitotenv.2019.02.384

    Article  CAS  Google Scholar 

  • Collins C, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40(1):45–52. https://doi.org/10.1021/es0508166

    Article  CAS  Google Scholar 

  • Cornet D, Sierra J, Tournebize R, Gabrielle B, Lewis FI (2016) Bayesian network modeling of early growth stages explains yam interplant yield variability and allows for agronomic improvements in West Africa. Eur J Agron 75:80–88

    Article  Google Scholar 

  • Darwiche A (2009) Modelling and reasoning with Bayesian networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Friedman N, Goldszmidt M, Wyner A (1999) Data analysis with Bayesian networks: A bootstrap approach. In UAI, 1999

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

    Google Scholar 

  • Dorel M, Roger-Estrade J, Manichon H, Delvaux B (2000) Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manag 16:133–140

    Article  Google Scholar 

  • Dreicer M, Hakonson TE, White GC, Whicker FW (1984) Rainsplash as a mechanism for soil contamination of plant surfaces. Health Phys 46:177–187

    Article  CAS  Google Scholar 

  • Drury B, Valverde-Rebaza J, Moura MF, de Andrade LA (2017) A survey of the applications of Bayesian networks in agriculture. Eng Appl Artif Intell 65:29–42

    Article  Google Scholar 

  • Fournet J (2002) Flore illustrée des phanérogames de Guadeloupe et de Martinique. Cirad and Gondwana Editions, p 2538

  • Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs. Springer-Verlag, New York

    Book  Google Scholar 

  • Jurianz S, Collas C, Lastel ML, Godard X, Archimède H, Rychen G, Mahieu M, Feidt C (2017) Evaluation of soil intake by growing creole young bulls in common grazing systems in humid tropical conditions. Animal:1–9. https://doi.org/10.1017/S1751731116002755

  • Lazzeri Y, Mouhoud ME (2010). Prospective territoriale en terre de développement durable : une application à la région Guadeloupe. Diasporas protéiformes. Études caribéennes, n°16. URL : http://journals.openedition.org/etudescaribeennes/10998 ; Accessed 15 august 2010 :https://doi.org/10.4000/etudescaribeennes.10998

  • Lewis FI, McCormick BJJ (2012) Revealing the complexity of health determinants in resource-poor settings. Am J Epidemiol 176(11):1051–1059

    Article  Google Scholar 

  • Liber Y, Letondor C, Pascal-Lorber S, Laurent F (2018) Growth parameters influencing uptake of chlordecone by Miscanthus species. Sci Total Environ 624:831–837

    Article  CAS  Google Scholar 

  • Lorber-Pascal S, Létondor C, Liber Y, Jamin EL, Laurent F (2016) Chlordecone transfer and distribution in maize shoots. J Agric Food Chem 64:409–415

  • Mouvet C, Dictor M-C, Bristeau S, Breeze D, Mercier A (2016) Remediation by chemical reduction in laboratory mesocosms of three chlordecone-contaminated tropical soils. Environ Sci Pollut Res 24:25500–25512

    Article  Google Scholar 

  • ORSTOM (Office de la recherche scientifique et technique outre-mer) (1981) Carte des sols n°2838. (IN) Les ressources en eau de surface de la Guadeloupe : figures - annexes / dressé par P. Chaperon ; d'après carte des sols de F. Colmet Daage http://sphaera.cartographie.ird.fr/carte.php?num=2838

  • Pittavino M, Lewis F, Furrer R (2016). abn: an R package for modelling multivariate data using additive Bayesian networks. The Comprehensive R Archive Network (CRAN), pp. 1–37

  • Pittavino M, Dreyfus A, Heuer C, Benschop J, Wilson P, Collins-Emerson J, Torgerson PR, Furrer R (2017) Comparison between generalized linear modelling and additive Bayesian network; identification of factors associated with the incidence of antibodies against Leptospira interrogans sv Pomona in meat workers in New Zealand. Acta Trop 173:191–199

    Article  CAS  Google Scholar 

  • Rowley MC, Grand S, Verrecchia EP (2018) Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137(1–2):27–49

    Article  CAS  Google Scholar 

  • Sierra J, Causeret F, Diman JL, Publicol M, Desfontaines L, Cavalier A, Chopin P (2015) Observed and predicted changes in soil carbon stocks under export and diversified agriculture in the Caribbean. The case study of Guadeloupe. Agric Ecosyst Environ 213:252–264

    Article  Google Scholar 

  • Trivedi P, Wallenstein MD, Delgado-Baquerizo M, Singh BK (2018) Chapter 3 -Microbial modulators and mechanisms of soil carbon storage. Soil Carbon Storage, pp:73–115. https://doi.org/10.1016/B978-0-12-812766-7.00003-2

  • Woignier, T., Clostre, F., Cattan, P., Levillain, J., Cabidoche, Y.-M., Lesueur Jannoyer, M. (2014). Diagnosis and management of field pollution in the case of an organochlorine pesticide, the chlordecone. In: Hernandez Soriano, Maria C., dir., Environmental risk assessment of soil contamination (p. 615-636). Rijeka, HRV : InTech. 918 p., https://doi.org/10.5772/57263

  • Woignier T, Clostre F, Fernandes P, Rangon L, Soler A, Lesueur-Jannoyer M (2016) Compost addition reduces porosity and chlordecone transfer in soil microstructure. Environ Sci Pollut Res Int 23:98–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jorge Sierra for constructive discussions about soil carbon dynamics associated with land management practices in Guadeloupe.

Funding

This study was funded by convention DRTT2017-162-68 of the prefectures of Guadeloupe and Martinique in the framework of the Plan Chlordecone III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Bedell.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

1. Land use intensification enhances chlordecone accumulation in plants

2. Concentration in plants is more related to soil organic matter than clay content

3. Prostrate plants concentrate more chlordecone than erect plants

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liber, Y., Cornet, D., Tournebize, R. et al. A Bayesian network approach for the identification of relationships between drivers of chlordecone bioaccumulation in plants. Environ Sci Pollut Res 27, 41046–41051 (2020). https://doi.org/10.1007/s11356-019-07449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07449-0

Keywords

Navigation