Skip to main content

Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils

Abstract

Coal mining and related industries each leave their characteristic “metal fingerprint” in the surrounding soils. Although geochemical investigations of such soils most often indicate heavy contamination with certain metals and bioassays point to their cytotoxic and genotoxic effects, the majority of studies are based on only one of the mentioned approaches. Here, the presented study investigated the effect of coal mining activities and related industry on surrounding soils by means of both geochemical and biological tools. The multielement composition of soils and associated eluates were used for the assessment of soil contamination level and the element bioavailable fractions, respectively. For cytotoxicity and genotoxicity evaluation, shallot (Allium ascalonicum L.) roots were exposed to selected soil eluates. Root growth, frequency of mitosis, mitotic and chromosomal abnormalities in root meristem cells, level of lipid peroxidation, and DNA damage evaluated by a comet assay were scored as toxicity endpoints. The results point to significant differences in the composition of collected soils and a variety of factors that contribute not only to their total metal load but also to the observed cytotoxic and genotoxic effects; all of which emphasize the necessity of a multidisciplinary approach in assessing the impact of anthropogenic activities on the environment, especially in historical mining areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abdel Migid HM, Azab YA, Ibrahim WM (2007) Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. Ecotoxicol Environ Saf 66(1):57–64

    CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82(10):1227–1238

    CAS  Google Scholar 

  • Artico LL, Kommling G, Migita NA, Menezes APS (2018) Toxicological effects of surface water exposed to coal contamination on the test system Allium cepa. Water Air Soil Pollut 229:248

    Google Scholar 

  • Arya SK, Mukherjee A (2014) Sensitivity of Allium cepa and Vicia faba towards cadmium toxicity. J Soil Sci Plant Nut 14(2):447–458

    CAS  Google Scholar 

  • Bakircioglu D, Bakircioglu Kurtulus Y, Íbar H (2011) Comparison of extraction procedures for assessing soil metal bioavailability of to wheat grains. CLEAN - Soil Air Water 39(8):728–734

    CAS  Google Scholar 

  • Bhattacharjee S (2014) Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Curr Sci 107(11):1811–1823

    CAS  Google Scholar 

  • Bonciu E, Sărac I, Iancu P (2017) Cytogenetic aspects highlighted in meristematic tissues of cucumbers (Cucumis sativus) under action of copper sulphate. Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series 47(1):399–404

    Google Scholar 

  • Brahim L, Mohamed M (2011) Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex halimus. Afr J Biotechnol 10(50):10143–10148

    Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants; Defence against oxidative stress. Z. Naturforsch 54c:730–734

    Google Scholar 

  • Cortez H, Pingarrón J, Muñoz JA, Ballester A, Blázquez ML, González F, García C, Coto O (2010) Bioremediation of soils contaminated with metalliferous mining wastes. Trends Bioremediat Phytoremediat:283–299

  • Cvjetko P, Milošić A, Domijan AM, Vinković Vrček I, Tolić S, Peharec Štefanić P, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28

    CAS  Google Scholar 

  • Dai S, Seredin VV, Ward CR, Hower JC, Xing Y, Zhang W, Song W, Wang P (2015) Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian guiding coalfield, Guizhou, China. Miner Depos 50:159–186

    CAS  Google Scholar 

  • Datta S, Singh J, Singh J, Singh S, Singh S (2018) Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustain Environ Res 28:171–178

    CAS  Google Scholar 

  • Durn G, Ottner F, Slovenec D (1999) Mineralogical and geochemical indicators of the polygenetic natura of terra rossa in Istria, Croatia. Geoderma 91:125–150

    CAS  Google Scholar 

  • Dutch target and intervention values (the new Dutch list) (2000) Delft, Netherlands: Dutch standardization institute; 2000 Feb 4; Available from: http://www.esdat.com.au/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf

  • Fiket Ž, Mikac N, Kniewald G (2016a) Sedimentary records of the Zrmanja River estuary, eastern Adriatic coast—natural vs. anthropogenic impacts. J Soil Sediment:1–12. https://doi.org/10.1007/s11368-016-1504-4

    Google Scholar 

  • Fiket Ž, Medunić G, Kniewald G (2016b) Rare earth elements distribution in soil nearby thermal power plant. Environ Earth Sci 75:598

    Google Scholar 

  • Fiket Ž, Mikac N, Kniewald G (2017) Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostand Geoanal Res 41(1):123–135

    CAS  Google Scholar 

  • Firbas P, Amon T (2013) Allium chromosome aberration test for evaluation effect of cleaning municipal water with constructed wetland (CW) in Sveti Tomaž, Slovenia. J Bioremediat Biodegrad 4(4):189

    Google Scholar 

  • Fiskesjö G (1981) Allium test on copper in drinking water. Vatten 17(3):232–240

    Google Scholar 

  • Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112

    Google Scholar 

  • Fiskesjö G (1988) The Allium test - an alternative in evnironmental studies: the relative toxicity of metal ions. Mutat Res 197:243–260

    Google Scholar 

  • Fiskesjö G (1993) The Allium test - a potential standard for the assessment of environmental toxicity, In: Gorsuch JW, Dwyer FJ, Ingersoll CG, La Point TW, (Eds.) Environmental toxicology and risk assessment: 2nd volume, American Society for Testing and Materials. STP 1216, Philadelphia, p 331–345

  • Freitas LAD, Rambo CL, Franscescon F, Barros AFPD, Lucca GDSD, Siebel AM, Scapinello J, Lucas EM, Magro JD (2017) Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina, Brazil. Rev Ambient Água 12(4):591–604

    Google Scholar 

  • Gasparatos D (2012) Fe–Mn concretions and nodules to sequester heavy metals in soils. In: Environmental chemistry for a sustainable world volume 2: remediation of air and water pollution chapter (Eds. Lichtfouse E, Schwarzbauer J, Robert D) Springer doi: https://doi.org/10.1007/978-94-007-2439-6_11

    Google Scholar 

  • Gichner T, Patková Z, Száková J, Demnerová K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 559:49–57

    CAS  Google Scholar 

  • Grant WF (1982) Chromosome aberration assays in Allium: a report of U. S Environmental Protection Agency Gene-Tox Program. Mutat Res 99(3):273–291

    CAS  Google Scholar 

  • Guzy J, Zgórska A, Ziembińska A (2012) Comet assay optimization with Allium cepa as an indicator for ecotoxicological usage. ACEE Journal 3:109–116

    Google Scholar 

  • Halamić J, Miko S (2009) Geokemijski atlas Republike Hrvatske. Zagreb, Hrvatski geološki institut

    Google Scholar 

  • Halamić J, Peh Z, Miko S, Galović L, Šorša A (2012) Geochemical atlas of Croatia: environmental implications and geodynamical thread. J Geochem Explor 115:36–46

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Google Scholar 

  • Helios Rybicka E (1996) Impact of mining and metallurgical industries on the environment in Poland. Appl Geochem 11:3–9

    Google Scholar 

  • Iqbal M, Abbas M, Nisar J, Nazir A, Qamar AZ (2019) Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review. Chem Int 5(1):1–80

    CAS  Google Scholar 

  • Jagoda M (1980) Cytological disturbances in Allium cepa L. root-meristems induced by herbicides. Acta Biol Cracov 22:189–211

    Google Scholar 

  • Karaismailoglu MC (2015) Investigation of the potential toxic effects of prometryne herbicide on Allium cepa root tip cells with mitotic activity, chromosome aberration, micronucleus frequency, nuclear DNA amount and comet assay. Caryologia 68(4):323–329

    Google Scholar 

  • Kumar S (2018) Chromosomal disturbances during mitotic activity of root tip cells in Allium by certain commonly used antibiotics. Phcog J 10(2):355–365

    CAS  Google Scholar 

  • Kumar A, Mishra MN, Kharkwal MC (2007) Induced mutagenesis in blackgram [Vigna mungo (L.) Hepper]. Indian J Genet Plant Breed 67(1):41–47

    Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    CAS  Google Scholar 

  • Li G, Kronzucker HJ, Shi W (2016) Root developmental adaptation to Fe toxicity: mechanisms and management. Plant Signaling & Behavior 11(1):e1117722 (3 pages). https://doi.org/10.1080/15592324.2015.1117722

    CAS  Article  Google Scholar 

  • Liu D, Jiang W, Li D (1993) Effects of aluminium ion on root growth, cell division, and nucleoli of garlic (Allium sativum L.). Environ Pollut 82(3):295–299

    CAS  Google Scholar 

  • Liu D, Jiang W, Tong S, Zhai L (1994) Effects of Mg2+ and Co2+ on cell division and nucleolar cycle during mitosis in root tip cells of Allium cepa. Isr J Plant Sci 42:235–243

    CAS  Google Scholar 

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    CAS  Google Scholar 

  • Majumdar A, Upadhyay MK, Kumar JS, Barla A, Srivastava S, Jaiswal MJ, Bose S (2019) Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Ecotoxicol Environ Saf 180:770–779

    CAS  Google Scholar 

  • Maluszynska J, Juchimiuk J (2005) Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arh Hig Rada Toksikol 56:177–184

    Google Scholar 

  • Medunić G, Ahel M, Božičević Mihalić I, Gaurina Srček V, Kopjar N, Fiket Ž, Bituhe T, Mikac I (2016a) Toxic airborne S, PAH, and trace element legacy of the superhigh-organic sulphur Raša coal combustion: cytotoxicity and genotoxicity assessment of soil and ash. Sci Total Environ 566-567:306–319

    Google Scholar 

  • Medunić G, Rađenović A, Bajramović M, Švec M, Tomac M (2016b) Once grand, now forgotten: what do we know about the superhigh-organic- sulphur Raša coal. The Mining- Geology-Petroleum Eng Bull 31(3):27–45

    Google Scholar 

  • Meng Q, Zou J, Zou J, Jiang W, Liu D (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L.). Acta Biol Cracov Ser Bot 49(1):95–101

    Google Scholar 

  • Müller G (1981) Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflüsse: Eine Bestandsaufnahme. Chemiker-Zeitung 6:157–164

    Google Scholar 

  • Nielsen MH, Rank J (1994) Screening of toxicity and genotoxicity in wastewater by the use of the Allium test. Hereditas 121(3):249–254

    CAS  Google Scholar 

  • NN 39 (2013) Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja. [in Croatian]. Narodne novine 39

  • Olorunfemi D, Duru E, Okieimen F (2012) Inducation of chromosome aberrations in Allium cepa L. root tips on exposure to ballast water. Caryologia 65(2):147–151

    Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5(5):333–340

    CAS  Google Scholar 

  • Paton GI, Killham K, Weitz HJ, Semple KT (2005) Biological tools for the assessment of contaminated land: applied soil ecotoxicology. Soil Use Manag 21:487–499

    Google Scholar 

  • Peh Z, Miko S, Hasan O (2010) Geochemical background in soils: a linear process domain? An example from Istria (Croatia). Environ Earth Sci 59:1367–1383

    CAS  Google Scholar 

  • Qin R, Wang C, Chen D, Björn LO, Li S (2015) Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage. Environ Toxicol Chem 34(5):1045–1055

    CAS  Google Scholar 

  • Radić S, Stipaničev D, Vujčić V, Rajčić MM, Širac S, Pevalek-Kozlina B (2010) The evaluation of surface and wastewater genotoxicity using the Allium cepa test. Sci Total Environ 408(5):1228–1233

    Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandstrom H, Siewers U, Steenfelt A, Tarvainen T (2005) FOREGS geochemical atlas of Europe, part 1: background information. Methodology and Maps, Geological Survey of Finland, Espoo 526

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Seth CS, Misra V, Chauhan LKS, Singh RR (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and comet assay approach. Ecotoxicol Environ Saf 71(3):711–716

    CAS  Google Scholar 

  • Shao L, Jones T, Gayer R, Dai S, Li S, Jiang Y, Zhang P (2003) Petrology and geochemistry of the high-sulfur coals from the upper Permian carbonate coal measures in the Heshan coalfield, southern China. Int J Coal Geol 55:1–26

    CAS  Google Scholar 

  • Sharma AK, Sharma A (1972) Chromosome techniques: theory and practice, 2nd edn. Butterworth & Co (publishers) Ltd, London

    Google Scholar 

  • Soodan RK, Katnoria JK, Nagpal A (2014) Allium cepa root chromosomal aberration assay: an efficient test system for evaluating genotoxicity of agricultural soil. Int J Sci Res 3(8):245–250

    Google Scholar 

  • Stapulionytė A, Kleizaitė V, Šiukšta R, Žvingila D, Taraškevičius R, Čėsnienė T (2019) Cyto/genotoxicological evaluation of hot spots of soil pollution using Allium bioassays in relation to geochemistry. Mutat Res/Genet Toxicol Environ Mutagen 842:102–110

    Google Scholar 

  • Synzynys BI, Ulyanenko LN, Amosova NV, Pyatkova SV, Momot OA (2019) Mixture toxicity of different metal ions in cytogenetic biotests. IOP Conf Ser: Mater Sci Eng 487:012019

    CAS  Google Scholar 

  • Ünyayar S, Çelik A, Çekiç FÖ, Gözel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21(1):77–81

    Google Scholar 

  • Vidaković Ž, Papeš D, Tomić M (1993) Toxicity of waste drilling fluids in modified Allium test. Water Air Soil Pollut 69:413–423

    Google Scholar 

  • Yildiz M, Ciǧerci IH, Konuk M, Fatih Fidan A, Terzi H (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75(7):934–938

    CAS  Google Scholar 

  • Yuan Z, Yao J, Wang F, Guo Z, Dong Z, Chen F, Hu Y, Sunahara G (2016) Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China. Environ Monit Assess 189:25

    Google Scholar 

  • Zeng R, Zhuang X, Koukouzas N, Xu W (2005) Characterization of trace elements in sulfur-rich Late Permian coals in the Heshan coal field, Guangxi, South China. Int J Coal Geol 61:87–95

    CAS  Google Scholar 

  • Zinkutė R, Taraškevičius R, Jankauskaitė M, Stankevičius Ž (2016) Methodological alternatives for calculation of enrichment factors used for assessment of topsoil contamination. J Soils Sediments 17(2):440–452

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željka Fiket.

Additional information

Responsible editor: Kitae Baek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiket, Ž., Medunić, G., Vidaković-Cifrek, Ž. et al. Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils. Environ Sci Pollut Res 27, 6613–6627 (2020). https://doi.org/10.1007/s11356-019-07396-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07396-w

Keywords

  • Cytotoxicity
  • Genotoxicity
  • Soil
  • Coal mining area
  • Metal(oid)s
  • Contamination