Skip to main content
Log in

Geochemical distribution of selected elements in flotation tailings and soils/sediments from the dam spill at the abandoned antimony mine Stolice, Serbia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Materials held within mine tailings pose a serious risk to the environment in cases of tailings dam failure. Collapse of the tailing dam at the Stolice antimony mine in West Serbia caused a spilling of tailing slurry into the nearby river watersheds. Medium-term effects of As, Pb, Sb, Zn, and Cd from the tailings material that remained in the flooded zone 3 years after the initial exposure were evaluated. Mobility of these elements was determined by analyzing their distribution between exchangeable, reducible, oxidizable, and residual phases. Results indicate that Fe-Mn oxides represent important sinks for As, Cd, Pb, and Sb. Multivariate statistical analysis revealed that concentrations of the analyzed elements were related to sand-sized fractions, as they tended to adsorb or co-precipitate as coatings on larger particles (particularly feldspar and quartz) upon the change of redox conditions. Assessment of the most relevant physico-chemical factors, metal(loid) concentration, and mobility can be used as tool to characterize the degree of contamination of impacted sites. Percentage of sand-sized particles, content of investigated metal(loid)s, and their amount in the reducible fractions are factors determining the best remediation techniques for the area impacted by tailing spill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdallah MAM (2017) Chemical speciation and contamination assessment of Pb and V by sequential extraction in surface sediment off Nile Delta, Egypt. Arab J Chem 10:68–75. https://doi.org/10.1016/j.arabjc.2012.06.001

    Article  CAS  Google Scholar 

  • Azam S, Li Q (2010) Tailings dam failures: a review of the last one hundred years. Geotech News 28:50–54 https://pdfs.semanticscholar.org/e57e/bdac0a801b412cefd42017c2dded29cafd41.pdf

    Google Scholar 

  • Badri MA, Aston SR (1983) Observations on heavy metal geochemical associations in polluted and non-polluted estuarine sediments. Environ Pollut B 6:181–193. https://doi.org/10.1016/0143-148X(83)90033-2

    Article  CAS  Google Scholar 

  • Bain DC, Mellor A, Wilson MJ, Duthie DM (1994) Chemical and mineralogical weathering rates and processes in an upland granitic till catchment in Scotland. Water Air Soil Pollut 73:11–27. https://doi.org/10.1007/BF00477973

    Article  CAS  Google Scholar 

  • Barać N, Škrivanj S, Bukumirić Z, Živojinović D, Manojlović D, Barać M, Petrović R, Ćorac A (2016) Distribution and mobility of heavy elements in floodplain agricultural soils along the Ibar River (Southern Serbia and Northern Kosovo). Chemometric investigation of pollutant sources and ecological risk assessment. Environ Sci Pollut Res 23:9000–9011. https://doi.org/10.1007/s11356-016-6142-2

    Article  CAS  Google Scholar 

  • Blum AE, Yund RA, Lasaga AC (1990) The effect of dislocation density on the dissolution rate of quartz. Geochimic Cosmochim Acta 54:283–297. https://doi.org/10.1016/0016-7037(90)90318-F

    Article  CAS  Google Scholar 

  • Borgese L, Federici S, Zacco A, Gianoncelli A, Rizzo L, Smith D, Donna F, Lucchini R, Depero L, Bontempi E (2013) Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy. Environ Sci Pollut Res 20:5067–5075. https://doi.org/10.1007/s11356-013-1473-8

    Article  CAS  Google Scholar 

  • Borůvka L, Vacek O, Jehlička J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128:289–300. https://doi.org/10.1016/j.geoderma.2005.04.010

    Article  CAS  Google Scholar 

  • Bowker L, Chamber D (2015) The risk, public liability & economics of tailings storage facility failures. Earthwork Act:1–56

  • Bowker L, Chambers D (2017) In the dark shadow of the supercycle tailings failure risk & public liability reach all time highs. Environments 4:75. https://doi.org/10.3390/environments4040075

    Article  Google Scholar 

  • Brook EJ, Moore JN (1988) Particle-size and chemical control of As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn in bed sediment from the Clark Fork River, Montana (USA). Sci Total Environ 76:247–266. https://doi.org/10.1016/0048-9697(88)90111-8

    Article  CAS  Google Scholar 

  • Byrne P, Hudson-Edwards K, Bird G, Macklin MG, Brewer PA, Williams R, Jamieson H (2018) Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Appl Geochem 91:64–74. https://doi.org/10.1016/j.apgeochem.2018.01.012

    Article  CAS  Google Scholar 

  • Council of European Union, Council Directive 98/83/EC of 3 November 1998, Quality of water intended for human consumption. Off J L 330: 32–54

  • Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth Sci Rev 100:1–420. https://doi.org/10.1016/j.earscirev.2009.10.011

    Article  CAS  Google Scholar 

  • Drahota P, Rohovec J, Filippi M, Mihaljevič M, Rychlovský P, Červený V, Pertold Z (2009) Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Sci Total Environ 407:3372–3384. https://doi.org/10.1016/j.scitotenv.2009.01.009

    Article  CAS  Google Scholar 

  • Đuričković A (1982) Metallogeny of the Brasina mining field, Zajača, Stolice, Dobri Potok. Bull Inst Geol Geophys Res 40:17–53 [In Serbian with English summary]

    Google Scholar 

  • Fu Z, Wu F, Mo C, Deng Q, Meng W, Giesy JP (2016) Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Sci Total Environ 539:97–104. https://doi.org/10.1016/j.scitotenv.2015.08.146

    Article  CAS  Google Scholar 

  • Grosbois CA, Horowitz AJ, Smith JJ, Elrick KA (2001) The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d’Alene, Idaho, USA. Part III. Downstream effects: the Spokane River Basin. Hydrol Process 15:855–875. https://doi.org/10.1002/hyp.192

    Article  Google Scholar 

  • Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič Ľ, Kučerová G, Radková A, Šottník P, Vozár J (2013) Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Environ Sci Pollut Res 20:7627–7642. https://doi.org/10.1007/s11356-013-1581-5

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA (2000) Heavy metal-bearing Mn oxides in river channel and foodplain sediments. In: Cotter-Howells J, Campbell L, Valsami-Jonesand E, Batchelder M (eds) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. Mineralogical society series, 9. Mineralogical Society, London, pp 207–226

    Google Scholar 

  • Hudson-Edwards KA (2003) Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Mineral Mag 67:205–217. https://doi.org/10.1180/0026461036720095

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA, Macklin MG, Curtis CD, Vaughan DJ (1998) Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: implications for dating and chemostratigraphy. Earth Surf Proc Land 23:671–684. https://doi.org/10.1002/(SICI)1096-9837(199808)23:8<671::AID-ESP871>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Ikem A, Egiebor NO, Nyavor K (2003) Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water Air Soil Pollut 149:51–75. https://doi.org/10.1023/A:1025694315763

    Article  CAS  Google Scholar 

  • Institute for the Development of Water Resources “Jaroslav Černi” (2015) Project for the protection and reconstruction of the tailings pond near the Stolice mine in Krupanj [in Serbian], Institute “Jaroslav Černi”, Belgrade

  • ISO 11464: 2006, Soil quality—pretreatment of samples for physico-chemical analysis

  • Janković S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineral Deposita 32:426–433. https://doi.org/10.1007/s001260050110

    Article  Google Scholar 

  • JDPZ (1966) Yugoslav Society of Soil Science: manual for soil chemical analysis

  • Kabata-Pendias A, Dudka S, Chlopecka A, Gawinowska T (1984) Background levels and environmental influences on trace metals in soils of the temperate humid zone of Europe. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton, pp 61–84

    Google Scholar 

  • Kalembkiewicz J, Sitarz-Palczak E, Zapala L (2008) A study of the chemical forms of manganese found in coal fly ash and soil. Microchem J 90:37–43. https://doi.org/10.1016/j.microc.2008.03.003

    Article  CAS  Google Scholar 

  • Lopez-Pamo E, Barettino D, Anton-Pacheco C, Ortiz G, Arranz JC, Gumiel J, Martınez-Pledel BM, Aparicio M, Montouto O (1999) The extent of the Aznalcóllar pyritic sludge spill and its effects on soils. Sci Total Environ 242:57–88. https://doi.org/10.1016/S0048-9697(99)00376-9

    Article  CAS  Google Scholar 

  • Kossoff D, Dubbin WE, Alfredsson M, Edwards SJ, Macklin MG, Hudson-Edwards KA (2014) Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied Geochemistry 51:229–245

    Article  CAS  Google Scholar 

  • Lottermoser B (2010) Mine wastes: characterization, treatment, and environmental impacts, Third edn. Springer-Verlag, Berlin, Heidelberg, p 400

    Chapter  Google Scholar 

  • Mossop KF, Davidson CM (2003) Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal Chim Acta 478:111–118. https://doi.org/10.1016/S0003-2670(02)01485-X

    Article  CAS  Google Scholar 

  • Mudrinić Č (1975) Primary dispersion aureoles of the antimony deposit Stolice (Western Serbia). Trans Faculty Min Geol Univ Belgrade 18:57–66 [in Serbian with English summary]

    Google Scholar 

  • Official Gazette of the RS, No 88/2010 (2010) Program for Systematic Monitoring of Soil Quality, Indicators for Assessing the Risks from Soil Degradation and Methodology for Developing Remediation Programs.

  • Official Gazette of the RS, No 22/10 (2010) Regulation on criteria for determining the status of endangered environment and priorities for rehabilitation and remediation

  • Official Gazette RS 23/94: Regulations for permitted amounts of hazardous and harmful substances in soil and water for irrigation and methods of their analysis.

  • Official Gazette of the RS, No 39/2016 (2016) Law on waste management

  • Pamić J (2002) The Sava–Vardar zone of the Dinarides and Hellenides versus the Vardarocean. Eclogae Geol Helv 95:99–113. https://doi.org/10.5169/seals-168948

    Article  Google Scholar 

  • Pavlović P, Marković M, Kostić O, Sakan S, Đorđević D, Perović V, Pavlović D, Pavlović M, Čakmak D, Jarić S, Paunović M, Mitrović M (2019) Evaluation of potentially toxic element contamination in the riparian zone of the river Sava. Catena 174:399–412. https://doi.org/10.1016/j.catena.2018.11.034

    Article  CAS  Google Scholar 

  • Porsani JL, Nascimento de Jesus FA, Stangari MC (2019) GPR survey on an Iron mining area after the collapse of the tailings dam I at the Córrego do Feijão mine in Brumadinho-MG, Brazil. Remote Sens 11:860. https://doi.org/10.3390/rs11070860

    Article  Google Scholar 

  • Ranđelović D, Mihailović N, Jovanović S (2019) Potential of Equisetum ramosissimum Desf. for remediation of antimony flotation tailings: a case study. Int J Phytoremediat 21:707–713. https://doi.org/10.1080/15226514.2018.1556590

    Article  CAS  Google Scholar 

  • Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Lück D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233. https://doi.org/10.1039/B001496F

    Article  CAS  Google Scholar 

  • Rico M, Benito G, Díez-Herrero A (2008) Floods from tailings dam failures. J Hazard Mater 154:79–87. https://doi.org/10.1016/j.jhazmat.2007.09.110

    Article  CAS  Google Scholar 

  • Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90:1106–1116. https://doi.org/10.1016/j.jenvman.2008.04.007

    Article  CAS  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, DeVos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor PJ, Olsson SA, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Espoo: Geological Survey of Finland

  • Serbia Floods (2014) The recovery needs assessment, United Nation, European Commission, World Bank Group, Government of the Republic of Serbia, Belgrade

  • Serbian Environmental protection Agency (2015) State of the environment report for 2014, Ministry of Agriculture and Environmental Protection. Republic of Serbia, Belgrade

    Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand–silt–clay ratios. J Sediment Res 24:151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Singh A, Hasnain S, Banerjee D (1999) Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River – a tributary of the lower Ganga, India. Environ Geol 39(1):90–98. https://doi.org/10.1007/s002540050439

    Article  CAS  Google Scholar 

  • Stefanović V, Trifković J, Mutić J, Tešić Ž (2016) Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia). Environ Sci Pollut Res 23:13178–13190. https://doi.org/10.1007/s11356-016-6486-7

    Article  CAS  Google Scholar 

  • USEPA (2014) Priority pollutant list, URL: https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf

  • Vidojević D, Bacanović N, Dimić B (2015) Flood disaster and contaminated sites in Serbia 2014. In: Perez A P, Sanchez S P, Liedekerke M V (ed) Remediated sites and brownfields. Success stories in Europe, Eds., Institute for Environment and Sustainability

  • Villarroel LF, Miller JR, Lechler PJ, Germanoski D (2006) Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, Southern Bolivia. Environ Geol 50:283–299. https://doi.org/10.1007/s00254-006-0326-x

    Article  CAS  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:268–292. https://doi.org/10.4067/S0718-95162010000100005

    Article  Google Scholar 

  • Voulvoulis N, Skolout JWF, Oates CJ, Plant JA (2013) From chemical risk assessment to environmental resources management: the challenge for mining. Environ Sci Pollut Res 20:7815–7826. https://doi.org/10.1007/s11356-013-1785-8

    Article  Google Scholar 

  • Wen X, Allen HE (1999) Mobilization of heavy metals from Le An River sediment. Sci Total Environ 227:101–108. https://doi.org/10.1016/S0048-9697(99)00002-9

    Article  CAS  Google Scholar 

  • Wilson MJ (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner 39:233–266. https://doi.org/10.1180/0009855043930133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Jaroslav Černi Institute for the Development of Water Resources for providing us with MSS and control material.

Funding

This study was supported by the Serbian Ministry of Education, Science, and Technological Development (project numbers 176016, 172030, 176006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Mutić.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranđelović, D., Mutić, J., Marjanović, P. et al. Geochemical distribution of selected elements in flotation tailings and soils/sediments from the dam spill at the abandoned antimony mine Stolice, Serbia. Environ Sci Pollut Res 27, 6253–6268 (2020). https://doi.org/10.1007/s11356-019-07348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07348-4

Keywords

Navigation