Skip to main content
Log in

Uptake, depuration, bioaccumulation, and selective enrichment of dechlorane plus in common carp (Cyprinus carpio)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Dechlorane plus (DP) is a chlorinated flame retardant with high production volume (HPV) and is widely used in our daily necessities. In the present study, a laboratory-scale microcosm was built up to simulate the uptake, depuration, bioaccumulation, and stereoselective enrichment of DP in a lower concentration and equilibration condition. Common carp (Cyprinus carpio) were used for 32 days exposure and 32 days depuration. The concentration ratios of syn-DP to total DP (fsyn values) in fish examined were lower than that in commercial products. Rate constants of uptake (kS) and elimination (ke) for the syn- and anti-DP were calculated using a first-order kinetic model. The uptake rate constants of syn- and anti-DP were 0.63 and 0.89 day−1, respectively. The depuration rate constants of syn-DP (0.11 day−1) were similar to anti-DP (0.096 day−1), suggesting that anti-DP is absorbed faster than syn-DP by common carp. The estimated bioconcentration factors for both syn-DP (5700 L/kg) and anti-DP (9300 L/kg) were higher than the bioconcentration hazard criteria outlined in the Stockholm Convention, suggesting the bioconcentration potential to aquatic organisms for DP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297

    CAS  Google Scholar 

  • Barón E, Eljarrat E, Barcelóa D (2012) Analytical method for the determination of halogenated norbornene flame retardants in environmental and biota matrices by gas chromatography coupled to tandem mass spectrometry. J Chromatogr A 1248:154–160

    Google Scholar 

  • Barón E, Dissanayake A, Vila-Cano J, Crowther C, Readman JW, Jha AN, Eljarrat E, Barcelo D (2016) Evaluation of genotoxic and physiological effects of decabromodiphenyl ether (BDE-209) and dechlorane plus (DP) flame retardants in marine mussels (Mytilus galloprovincialis). Environ Sci Technol 50:2700–2708

    Google Scholar 

  • Baussant T, Sanni S, Skadsheim A, Jonsson G, Børseth JF, Gaudebert B (2001) Bioaccumulation of polycyclic aromatic compounds: 2. Modeling bioaccumulation in marine organisms chronically exposed to dispersed oil. Environ Toxicol Chem 20:1185–1195

    CAS  Google Scholar 

  • Betts KS (2006) A new flame retardant in the air. Environ Sci Technol 40:1090–1091

    CAS  Google Scholar 

  • Cheng J, Mao L, Zhao Z, Shen M, Zhang S, Huang Q, Gao S (2012) Bioaccumulation, depuration and biotransformation of 4,4′-dibromodiphenyl ether in crucian carp (Carassius auratus). Chemosphere 86:446–453

    CAS  Google Scholar 

  • Dou J, Jin Y, Li Y, Wu B, Li M (2015) Potential genotoxicity and risk assessment of a chlorinated flame retardant, dechlorane plus. Chemosphere 135:462–466

    CAS  Google Scholar 

  • Ducat DA, Khan MAQ (1992) Biotransformation of the flame retardant MC-984 by goldfish, Carassius auratus. Bull Environ Contam Toxicol 49:569–575

    CAS  Google Scholar 

  • Eyken AV, Pijuan L, Martí-Blanco MJ, Díza-Ferrero J (2016) Determination of dechlorane plus and related compounds (dechlorane 602, 603 and 604) in fish and vegetable oils. Chemosphere 144:1256–1263

    Google Scholar 

  • Feo ML, Barón E, Eljarrat E, Barceló D (2012) Dechlorane plus and related compounds in aquatic and terrestrial biota: a review. Anal Bioanal Chem 404:2625–2637

    CAS  Google Scholar 

  • Gobas FAPC, De Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integr Environ Assess Manag 5:624–637

    CAS  Google Scholar 

  • Hilal SH, Karickhoff SW, Carreira LA (2003) Prediction of chemical reactivity parameters and physical properties of organic compounds from molecular structure using SPARC. US. EPA, Athens, GA. EPA/ 600/R-03/030

  • Hoh E, Zhu L, Hites RA (2006) Dechlorane plus, a chlorinated flame retardant, in the Greak Lakes. Environ Sci Technol 40:1184–1189

    CAS  Google Scholar 

  • Hong WJ, Jia H, Liu C, Zhang Z, Sun Y, Li YF (2014) Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environ Pollut 191:175–181

    CAS  Google Scholar 

  • Hong WJ, Jia H, Li YF, Sun Y, Liu X, Wang L (2016) Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotoxicol Environ Saf 128:11–20

    CAS  Google Scholar 

  • Jia H, Sun Y, Liu X, Yang M, Wang D, Qi H, Shen L, Sverko E, Reiner EJ, Li YF (2011) Concentration and bioaccumulation of dechlorane compounds in coastal environment of northern China. Environ Sci Technol 45:2613–2618

    CAS  Google Scholar 

  • Kang JH, Kim JC, Jin GZ, Park H, Baek SY, Chang YS (2010) Detection of dechlorane plus in fish from urban-industrial rivers. Chemosphere 79:850–854

    CAS  Google Scholar 

  • Kang H, Moon HB, Choi K (2016) Toxicological responses following short-term exposure through gavage feeding or water-borne exposure to dechlorane plus in zebrafish (Danio rerio). Chemosphere 146:226–232

    CAS  Google Scholar 

  • Klosterhaus SL, Stapleton HM, La Guardia MJ, Greig DJ (2012) Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environ Int 47:56–65

    CAS  Google Scholar 

  • Landrum PF, Lee HI, Lydy MJ (1992) Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environ Toxicol Chem 11:1709–1725

    CAS  Google Scholar 

  • Li Y, Yu L, Wang J, Wu J, Mai B, Dai J (2013a) Accumulation pattern of dechlorane plus and associated biological effects on rats after 90 days of exposure. Chemosphere 90:2149–2156

    CAS  Google Scholar 

  • Li Y, Yu L, Zhu Z, Dai J, Mai B, Wu J, Wang J (2013b) Accumulation and effects of 90-day oral exposure to dechlorane plus in quail (Coturnix coturnix). Environ Toxicol Chem 32:1649–1654

    CAS  Google Scholar 

  • Liang X, Li W, Martyniuk CJ, Zha J, Wang Z, Cheng G, Giesy JP (2014) Effects of dechlorane plus on the hepatic proteome of juvenile Chinese sturgeon (Acipenser sinensis). Aquat Toxicol 148:83–91

    CAS  Google Scholar 

  • Ma W, Liu L, Qi H, Sun D, Shen J, Wang D, Li YF (2011) Dechlorane plus in multimedia in northeastern Chinese urban region. Environ Int 37:66–70

    Google Scholar 

  • Mackay D (2001) Multimedia environmental models: the fugacity approach. Lewis Publishers, Chelsea

    Google Scholar 

  • Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    CAS  Google Scholar 

  • Meylan WM, Howard PH (1995) Atom/fragment contribution method for estimating octanol-water partition coefficient. J Pharm Sci 84:83–92

    CAS  Google Scholar 

  • Mo L, Wu JP, Luo XJ, Sun YX, Zheng XB, Zhang Q, Zou FS, Mai BX (2013) Dechlorane plus flame retardant in kingfishers (Alcedoatthis) from an electronic waste recycling site and a reference site, South China: influence of residue levels on the isomeric composition. Environ Pollut 174:57–62

    CAS  Google Scholar 

  • Möller A, Xie Z, Sturm R, Ebinghaus R (2010) Large-scale distribution of dechlorane plus in air and seawater from the Arctic to Antarctic. Environ Sci Technol 44:8977–8982

    Google Scholar 

  • Möller A, Xie Z, Cai M, Zhong G, Huang P, Cai M, Sturm R, He J, Ebinghaus R (2011) Polybrominateddiphenyl ethers vs alternate brominated flame retardants and dechloranes from East Asia to the Arctic. Environ Sci Technol 45:6793–6799

    Google Scholar 

  • Munschy C, Héas-Moisan K, Tixier C, Olivier N, Gastineau O, Le Bayon N, Buchet V (2011) Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): part 1. Bioaccumulation and elimination kinetics of individual congeners and their debrominated metabolites. Environ Pollut 159:229–237

    CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ Sci Technol 8:1113–1115

    CAS  Google Scholar 

  • Peng H, Zhang K, Wan Y, Sun J, Hu J (2012) Tissue distribution, maternal transfer, and age-related accumulation of dechloranes in Chinese sturgeon. Environ Sci Technol 46:9907–9913

    Google Scholar 

  • Peng H, Wan Y, Zhang K, Sun J, Hu J (2014) Trophic transfer of dechloranes in the marine food web of Liaodong Bay, North China. Environ Sci Technol 48:5458–5466

    CAS  Google Scholar 

  • Peng Y, Wu JP, Tao L, Mo L, Zheng XB, Tang B, Luo XJ, Mai BX (2015) Accumulation of dechlorane plus flame retardant in terrestrial passerines from a nature reserve in South China: the influences of biological and chemical variables. Sci Total Environ 514:77–82

    CAS  Google Scholar 

  • Qiu X, Hites R (2008) Dechlorane plus and other flame retardants in tree bark from the northeastern United States. Environ Sci Technol 42:31–36

    CAS  Google Scholar 

  • Ren NQ, Sverko E, Li YF, Zhang Z, Harner T, Wang DG, Wan XN, Mccarry BE (2008) Levels and isomer profiles of dechlorane plus in Chinese air. Environ Sci Technol 42:6476–6480

    CAS  Google Scholar 

  • Shen L, Reiner EJ, Macpherson KA, Kolic TM, Sverko E, Helm PA, Bhavsar SP, Brindle ID, Marvin CH (2010) Identification and screening analysis of halogenated norbornene flame retardants in the Laurentian Great Lakes: dechloranes 602, 603 and 604. Environ Sci Technol 44:760–766

    CAS  Google Scholar 

  • Sühring R, Byer J, Freese M, Pohlmann JD, Wolschke H, Möller A, Hodson PV, Alaee M, Hanel R, Ebinghaus R (2014) Brominated flame retardants and dechloranes in European and American eels from glass to silver life stages. Chemosphere 116:104–111

    Google Scholar 

  • Sun Y, Yu H, Zhang J, Yin Y, Shi H, Wang X (2006) Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere 63:1319–1327

    CAS  Google Scholar 

  • Sverko E, Tomy GT, Marvin CH, Zaruk D, Reiner E, Helm PA, Hill B, McCarry BE (2008) Dechlorane plus levels in sediment of the lower Great Lakes. Environ Sci Technol 42:361–366

    CAS  Google Scholar 

  • Sverko E, Reiner EJ, Tomy GT, McCrindle R, Shen L, Arsenault G, Zaruk D, MacPherson KA, Marvin CH, Helm PA, McCarry BE (2010) Compounds structurally related to dechlorane plus in sediment and biota from Lake Ontario (Canada). Environ Sci Technol 44:574–579

    CAS  Google Scholar 

  • Sverko E, Tomy G, Reiner E, Li Y, McCarry B, Arnot J, Law R, Hites R (2011) Dechlorane plus and related compounds in the environment: a review. Environ Sci Technol 45:5088–5098

    CAS  Google Scholar 

  • Tian S, Zhu L, Bian J, Fang S (2012) Bioaccumulation and metabolism of polybrominated diphenyl ethers in carp (Cyprinus carpio) in a water/sediment microcosm: important role of particulate matter exposure. Environ Sci Technol 46:2951–2958

    CAS  Google Scholar 

  • Tomy GT, Pleskach K, Ismail N, Whittle DM, Helm PA, Sverko E, Zaruk D, Marvin CH (2007) Isomers of dechlorane plus in Lake Winnipeg and Lake Ontario food webs. Environ Sci Technol 41:224–2254

    Google Scholar 

  • Tomy GT, Thomas CR, Zidane TM, Murison KE, Pleskach K, Hare J, Arsenault G, Marvin CH, Sverko E (2008) Examination of isomer specific bioaccumulation parameters and potential in vivo hepatic metabolites of syn- and anti-dechlorane plus isomers in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 42:5562–5567

    CAS  Google Scholar 

  • UNEP (2001) Final act of the Conference of Plenipotentiaries on the Stockholm Convention on Persistent Organic Pollutants. United Nations Environment Program, Geneva, p 44

    Google Scholar 

  • US EPA (2009) Exposure assessment tools and models, Estimation Programs Interface (EPI) Suite, Ver. 4.0, Version 4.0; U. S. Environmental Protection Agency, Exposure Assessment Branch: Washington,D.C.

  • US EPA (2010) High production volume (HPV) challenge. http://www.epa.gov/chemrtk/pubs/summaries/dechlorp/c15635tc.htm (accessed August 2010)

  • Wang B, Iino F, Huang J, Lu Y, Yu G, Morita M (2010a) Dechlorane plus pollution and inventory in soil of Huai’an City, China. Chemosphere 80:1285–1290

    CAS  Google Scholar 

  • Wang DG, Yang M, Qi H, Sverko E, Ma WL, Li YF, Alaee M, Reiner EJ, Shen L (2010b) An Asia-specific source of dechlorane plus: concentrations, isomers profiles, and other related compounds. Environ Sci Technol 44:6608–6613

    CAS  Google Scholar 

  • Wang DG, Guo MX, Pei W, Byer JD, Wang Z (2015) Trophic magnification of chlorinated flame retardants and their dechlorinated analogs in a fresh water food web. Chemosphere 118:293–300

    CAS  Google Scholar 

  • Wang P, Zhang Q, Zhang H, Wang T, Sun H, Zheng S, Li Y, Liang Y, Jiang G (2016) Sources and environmental behaviors of dechlorane plus and related compounds - a review. Environ Int 88:206–220

    CAS  Google Scholar 

  • Wu ZY, Huang L, Gao YL, Guo QH, Sun YQ (2013) The effects of dechlorane plus on toxicity. Appl Mech Mater 380-384:4163–4166

    Google Scholar 

  • Xian Q, Siddique S, Li T, Feng YL, Takser L, Zhu J (2011) Sources and environmental behavior of dechlorane plus - a review. Environ Int 37:1273–1284

    CAS  Google Scholar 

  • Yang M, Jia H, Ma WL, Qi H, Cui S, Li YF (2012) Levels, compositions, and gas-particle partitioning of polybrominated diphenyl ethers and dechlorane plus in air in a Chinese northeastern city. Atmos Environ 55:73–79

    CAS  Google Scholar 

  • Yeung LWY, Mabury SA (2013) Bioconcentration of aqueous film-forming foam (AFFF) in juvenile rainbow trout (Oncorhyncus mykiss). Environ Sci Technol 47:12505–12513

    CAS  Google Scholar 

  • Yu ZQ, Lu SY, Gao ST, Wang JZ, Li HR, Zeng XY, Sheng GY, Fu JM (2010) Levels and isomer profiles of dechlorane plus in the surface soils from e-waste recycling areas and industrial areas in South China. Environ Pollut 158:2920–2925

    CAS  Google Scholar 

  • Zeng YH, Luo XJ, Tang B, Zheng XB, Mai BX (2014) Gastrointestinal absorption, dynamic tissue-specific accumulation, and isomer composition of dechlorane plus and related analogs in common carp by dietary exposure. Ecotoxicol Environ Saf 100:32–38

    CAS  Google Scholar 

  • Zhang Y, Wu JP, Luo XJ, Wang J, Chen SJ, Mai BX (2011) Tissue distribution of dechlorane plus and its dechlorinated analogs in contaminated fish: high affinity to the brain for anti-DP. Environ Pollut 159:3647–3652

    CAS  Google Scholar 

  • Zhao L, Gong N, Mi D, Luan CD, Shao KS, Jia HL, Sun YQ (2014) Kinetics of stereoselective enrichment of dechlorane plus in Ulva pertusa. Chemosphere 111:580–586

    CAS  Google Scholar 

  • Zheng XB, Luo XJ, Zeng YH, Wu JP, Chen SJ, Mai BX (2014) Halogenated flame retardants during egg formation and chicken embryo development: maternal transfer, possible biotransformation, and tissue distribution. Environ Toxicol Chem 33:1712–1719

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2019YFC1407702), National Natural Science Foundation of China (51879019 and 51609029) and the fundamental Research Funds for the Central Universities (3132019335).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Jia or Weijun Guo.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Jia, H., Hong, WJ. et al. Uptake, depuration, bioaccumulation, and selective enrichment of dechlorane plus in common carp (Cyprinus carpio). Environ Sci Pollut Res 27, 6269–6277 (2020). https://doi.org/10.1007/s11356-019-07239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07239-8

Keywords

Navigation