Skip to main content

Advertisement

Log in

Field test of SO3 removal in ultra-low emission coal-fired power plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Under the extensive implementation of ultra-low emission (ULE) facilities in coal-fired power plants of China, sulfur trioxide (SO3) has received increasing attention due to its impact on human health and operation safety of power plants. However, systematic research and evaluation for controlling SO3 emission in various ULE facilities are still lacking. Here, a systematic study was conducted based on 378 in situ performance evaluation tests carried out in 148 coal-fired power plants. The results illustrate that the SO2/SO3 conversion rate of the selective catalytic reduction devices can be controlled within 1% before and after ULE retrofit. Also, the synergistic removal efficiency of SO3 in the low-low-temperature electrostatic precipitator and the wet electrostatic precipitator can be higher than 70%. The removal efficiency of SO3 in the wet limestone-gypsum flue gas desulfurization scrubber is 33–64% before ULE and 31–81% after, and the average efficiency of the double scrubbers is 8.7% higher than that of the single scrubber. Due to the different SO3 removing abilities of various technologies, the overall efficiency of SO3 removal is in the range between 27 and 95% adopting different ULE technical routes. Average concentration of SO3 emission can be decreased by 51.8% after ULE application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahn J, Okerlund R, Fry A, Eddings EG (2011) Sulfur trioxide formation during oxy-coal combustion. Int J Greenhouse Gas Control 5:S127–S135

    CAS  Google Scholar 

  • Bayless DJ, Khan AR, Tanneer S, Birru R (2011) An alternative to additional SO3 injection for fly ash conditioning. J Air Waste Manage Assoc 50:169–174

    Google Scholar 

  • Belo LP, Elliott LK, Stanger RJ, Spörl R, Shah KV, Maier J, Wall TF (2014) High-temperature conversion of SO2 to SO3: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing. Energy Fuel 28:7243–7251

    CAS  Google Scholar 

  • Bin H, Lin Z, Yang Y, Fei L, Cai L, Linjun Y (2017) PM2.5 and SO3 collaborative removal in electrostatic precipitator. Powder Technol 318:484–490

    CAS  Google Scholar 

  • Bologa A, Paur HR, Seifert H, Wäscher T, Woletz K (2009) Novel wet electrostatic precipitator for collection of fine aerosol. J Electrost 67:150–153

    CAS  Google Scholar 

  • Brachert L, Kochenburger T, Schaber K (2013) Facing the sulfuric acid aerosol problem in flue gas cleaning: pilot plant experiments and simulation. Aerosol Sci Technol 47:1083–1091

    CAS  Google Scholar 

  • Chang J, Dong Y, Wang Z, Wang P, Chen P, Ma C (2011) Removal of sulfuric acid aerosol in a wet electrostatic precipitator with single terylene or polypropylene collection electrodes. J Aerosol Sci 42:544–554

    CAS  Google Scholar 

  • Chen H, Pan P, Chen X, Wang Y, Zhao Q (2017) Fouling of the flue gas cooler in a large-scale coal-fired power plant. Appl Therm Eng 117:698–707

    CAS  Google Scholar 

  • DL/T998 (2016) Dl/T998-2016, Performance test code for wet limestone gypsum flue gas desulphurization [S]

  • Dombrowski K, Blythe G, Rhudy R (2004) SO3 mitigation cost estimating workbook. Paper #34

  • Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal, B 19:103–117

    CAS  Google Scholar 

  • Fleig D, Normann F, Andersson K, Johnsson F, Leckner B (2009) The fate of sulphur during oxy-fuel combustion of lignite. Energy Procedia 1:383–390

    CAS  Google Scholar 

  • Fleig D, Andersson K, Normann F, Johnsson F (2011) SO3 formation under oxyfuel combustion conditions. Ind Eng Chem Res 50:8505–8514

    CAS  Google Scholar 

  • Galloway B, Padak B (2017) Effect of flue gas components on the adsorption of sulfur oxides on CaO. Fuel 197:541–550

    CAS  Google Scholar 

  • Galloway BD, Sasmaz E, Padak B (2015) Binding of SO3 to fly ash components: CaO, MgO, Na2O and K2O. Fuel 145:79–83

    CAS  Google Scholar 

  • GB 13223–2011, Emission standard of air pollutants for thermal power plants [S]

  • GB/T 16157–1996, Determination of particulates and sampling methods of gaseous pollutants emitted from exhaust gas of stationary sour [S]

  • GB/T 21508–2008, Performance test method for coal-fired flue gas desulphurization equipment [S]

  • GB/T 21509–2008, Denitration equipment of coal-fired flue gas [S]

  • Haupa K, Bil A, Mielke Z (2015) Donor-acceptor complexes between ammonia and sulfur trioxide: an FTIR and computational study. J Phys Chem A 119:10724–10734

    CAS  Google Scholar 

  • Huang J, Wang H, Shi Y, Zhang F, Dang X, Zhang H, Shu Y, Deng S, Liu Y (2016a) Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist. Environ Sci Pollut Res Int 23:19219–19228

    CAS  Google Scholar 

  • Huang J, Zhang F, Shi Y, Dang X, Zhang H, Shu Y, Deng S, Liu Y (2016b) Investigation of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist from a simulated WFGD system. J Aerosol Sci 100:38–52

    CAS  Google Scholar 

  • Huijbregts WMM, Leferink RGI (2004) Latest advances in the understanding of acid dewpoint corrosion: corrosion and stress corrosion cracking in combustion gas condensates. Anti-Corros Method M 51:173–188

    CAS  Google Scholar 

  • Ji P, Gao X, Du X, Zheng C, Luo Z, Cen K (2016) Relationship between the molecular structure of V2O5/TiO2 catalysts and the reactivity of SO2 oxidation. Catal Sci Technol 6:1187–1194

    CAS  Google Scholar 

  • Kikuchi R (2001) Environmental management of sulfur trioxide emission: impact of SO3 on human health. Environ Manag 27:837–844

    CAS  Google Scholar 

  • Li Z, Jiang J, Ma Z, Wang S, Duan L (2015) Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China. Atmos Environ 120:227–233

    CAS  Google Scholar 

  • Li X, Zhou C, Li J, Lu S, Yan J (2019) Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator. Environ Sci Pollut Res Int 26:12798–12806

    CAS  Google Scholar 

  • Liu Y, Bisson TM, Yang H, Xu Z (2010) Recent developments in novel sorbents for flue gas clean up. Fuel Process Technol 91:1175–1197

    CAS  Google Scholar 

  • Menasha J, Dunn-Rankin D, Muzio L, Stallings J (2011) Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater. Fuel 90:2445–2453

    CAS  Google Scholar 

  • Mitsui Y, Imada N, Kikkawa H, Katagawa A (2011) Study of hg and SO3 behavior in flue gas of oxy-fuel combustion system. Int J Greenhouse Gas Control 5:S143–S150

    CAS  Google Scholar 

  • Pan D, Yang L, Wu H, Huang R (2017a) Removal characteristics of sulfuric acid aerosols from coal-fired power plants. J Air Waste Manage Assoc 67:352–357

    CAS  Google Scholar 

  • Pan D, Yang L, Wu H, Huang R, Zhang Y (2017b) Formation and removal characteristics of sulfuric acid mist in a wet flue gas desulfurization system. J Chem Technol Biotechnol 92:598–604

    CAS  Google Scholar 

  • Schwämmle T, Bertsche F, Hartung A, Brandenstein J, Heidel B, Scheffknecht G (2013) Influence of geometrical parameters of honeycomb commercial SCR-DeNOx-catalysts on DeNOx-activity, mercury oxidation and SO2/SO3-conversion. Chem Eng J 222:274–281

    Google Scholar 

  • Shanthakumar S, Singh DN, Phadke RC (2008) Flue gas conditioning for reducing suspended particulate matter from thermal power stations. Prog Energy Combust Sci 34:685–695

    CAS  Google Scholar 

  • Shen J, Zheng C, Xu L, Zhang Y, Zhang Y, Liu S, Gao X (2019) Atmospheric emission inventory of SO3 from coal-fired power plants in China in the period 2009–2014. Atmos Environ 197:14–21

    CAS  Google Scholar 

  • Spörl R, Maier J, Scheffknecht G (2013) Sulphur oxide emissions from dust-fired oxy-fuel combustion of coal. Energy Procedia 37:1435–1447

    Google Scholar 

  • Srivastava RK, Miller CA, Erickson C, Jambhekar R (2012) Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manage Assoc 54:750–762

    Google Scholar 

  • Tan Y, Croiset E, Douglas MA, Thambimuthu KV (2006) Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel 85:507–512

    CAS  Google Scholar 

  • Underwood DS, Yurchenko SN, Tennyson J, Jensen P (2014) Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state. J Chem Phys 140:244316

    Google Scholar 

  • Wang Z, Huan Q, Qi C, Zhang L, Cui L, Xu X, Ma C (2012) Study on the removal of coal smoke SO3 with CaO. Energy Procedia 14:1911–1917

    Google Scholar 

  • Wang X, Liu X, Li D, Zhang Y, Xu M (2015) Effect of steam and sulfur dioxide on sulfur trioxide formation during oxy-fuel combustion. Int J Greenhouse Gas Control 43:1–9

    Google Scholar 

  • Wang Y, Gao W, Zhang H, Huang C, Luo K, Zheng C, Gao X (2019) Insights into the role of ionic wind in honeycomb electrostatic precipitators. J Aerosol Sci 133:83–95

    CAS  Google Scholar 

  • Wang X, Du X, Liu S, Yang G, Chen Y, Zhang L, Tu X (2020) Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: a combined DFT and experimental study. Appl Catal, B 260: 118168

    CAS  Google Scholar 

  • Wolf DE, Seaba JP (2012) Opacity reduction using dry hydrated lime injection. Air Waste 44:908–912

    Google Scholar 

  • Wu H, Pan D, Jiang Y, Huang R, Hong G, Yang B, Peng Z, Yang L (2016) Improving the removal of fine particles from desulfurized flue gas by adding humid air. Fuel 184:153–161

    CAS  Google Scholar 

  • Xiang B, Shen W, Zhang M, Yang H, Lu J (2017) Effects of different factors on sulfur trioxide formations in a coal-fired circulating fluidized bed boiler. Chem.Eng.Sci. 172:262–277

    CAS  Google Scholar 

  • Xiao H, Cheng Q, Li J, Ge J (2019) Enhanced effects of ash and slag on SO3 formation in the post-flame region. Environ Sci Pollut Res Int 26:20920–20928

    CAS  Google Scholar 

  • Xu Y, Liu X, Wang H, Zhang Y, Qi J, Xu M (2018) Investigation of simultaneously reducing the emission of ultrafine particulate matter and heavy metals by adding modified attapulgite during coal combustion. Energy Fuel 33:1518–1526

    Google Scholar 

  • Yang Z, Zheng C, Zhang X, Zhou H, Silva AA, Liu C, Snyder B, Wang Y, Gao X (2018) Challenge of SO3 removal by wet electrostatic precipitator under simulated flue gas with high SO3 concentration. Fuel 217:597–604

    CAS  Google Scholar 

  • Zheng C, Hong Y, Xu Z, Li C, Wang L, Yang Z, Zhang Y, Gao X (2018) Experimental study on removal characteristics of SO3 by wet flue gas desulfurization absorber. Energy Fuel 32:6031–6038

    CAS  Google Scholar 

  • Zheng C, Wang Y, Liu Y, Yang Z, Qu R, Ye D, Liang C, Liu S, Gao X (2019a) Formation, transformation, measurement, and control of SO3 in coal-fired power plants. Fuel 241:327–346

    CAS  Google Scholar 

  • Zheng C, Xiao L, Qu R, Liu S, Xin Q, Ji P, Song H, Wu W, Gao X (2019b) Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst. Chem Eng J 361:874–884

    CAS  Google Scholar 

  • Zheng C, Luo C, Liu Y, Wang Y, Lu Y, Qu R, Zhang Y, Gao X (2020) Experimental study on the removal of SO3 from coal-fired flue gas by alkaline sorbent. Fuel 259: 116306

    CAS  Google Scholar 

Download references

Funding

The study is financially supported by the National Key Research and Development Program (no. 2017YFB0603201), National Natural Science Foundation of China (no. 51836006), and the Key Science and Technology Projects of China Huadian Group Co., Ltd. (CHDKJ17-01-55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghang Zheng.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zheng, C., Hu, F. et al. Field test of SO3 removal in ultra-low emission coal-fired power plants. Environ Sci Pollut Res 27, 4746–4755 (2020). https://doi.org/10.1007/s11356-019-07210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07210-7

Keywords

Navigation