Skip to main content

Advertisement

Log in

CeCu composite oxide for chlorophenol effective removal by heterogeneous catalytic wet peroxide oxidation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

CeCu solid solution oxide catalysts were prepared by the complex method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS). And its activity in the catalytic wet peroxide oxidation (CWPO) of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) in water was investigated. The results showed that the Cu2+ ions dissolved into the CeO2 lattice to form CeCu solid solution oxide with a coarse, interconnected, porous, and cotton-like morphology. The metal-oxygen bonds were weakened by the formation of solid solution in the CeCu oxide catalyst. This weakening facilitated the activation and decomposition of the H2O2 to form highly oxidative HO· species that can lead to significant chlorophenol mineralization. The formation of CeCu solid solution oxide can effectively inhibit the Cu ions to be leached from the used CeCu oxide catalysts, which can ensure the CeCu oxide catalysts to adapt to a wide pH range of 2.1–7.9 and exhibit good reusability. CWPO reaction of 4-CP and 2,4-DCP molecules on CeCu oxide catalysts conforms to the first-order kinetic equation: y = 6959.3x − 17.2 and y = 9725x − 25.4, respectively. And the reaction activation energies are 57.8 and 80.8 kJ/mol, respectively. The TOC removals of 4-CP and 2,4-DCP can exceed 88 and 82%, and the dechlorination rates of 4-CP and 2,4-DCP are higher than 95 and 99.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Avgouropoulos G, Ioannides T (2006) Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl Catal B Environ 67:1–11

    Article  CAS  Google Scholar 

  • Avgouropoulos G, Ioannides T, Matralis H (2005) Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO. Appl Catal B Environ 56:87–93

    Article  CAS  Google Scholar 

  • Bautista P, Mohedano AF, Menéndez N, Casas JA, Rodriguez JJ (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catal Today 151(1–2):148–152

    Article  CAS  Google Scholar 

  • Coelho JV, Guedes MS, Prado RG, Tronto J, Ardisson JD, Pereira MC, Oliveira LCA (2014) Effect of iron precursor on the Fenton-like activity of Fe2O3/mesoporous silica catalysts prepared under mild conditions. Appl Catal B Environ 144:792–799

    Article  CAS  Google Scholar 

  • Dukkanci M, Gunduz G, Yilmaz S, Prihod’ko RV (2010) Heterogeneous Fenton-like degradation of rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater 181(1-3):343–350

    Article  CAS  Google Scholar 

  • Garcia-Costa AL, Lopez-Perela L, Xu XY, Zazo JA, Rodriguez JJ, Casas JA (2018) Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons. Environ Sci Pollut Res 25(28):27748–27755

    Article  CAS  Google Scholar 

  • Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl Clay Sci 47:182–192

    Article  Google Scholar 

  • Huaccallo Y, Álvarez-Torrellas S, Marín MP, Gil MV, Larriba M, Águeda VI, Ovejero G, García J (2019) Magnetic Fe3O4/multi-walled carbon nanotubes materials for a highly efficient depletion of diclofenac by catalytic wet peroxideoxidation. Environ Sci Pollut Res 26:22372–22388. https://doi.org/10.1007/s11356-019-05597-x

    Article  CAS  Google Scholar 

  • Inchaurrondo N, Cechini J, Font J, Haure P (2012) Strategies for enhanced CWPO of phenol solutions. Appl Catal B Environ 111–112:641–648

    Article  Google Scholar 

  • Jiao ZJ, Zhou GL, Zhang HD, Shen Y, Zhang XM, Li JX, Gao X (2018) Effect of calcination temperature on catalytic performance of CeCu oxide in removal of quinoline by wet hydrogen peroxide oxidation from water. J Braz Chem Soc 29:2233–2243

    CAS  Google Scholar 

  • Khanikar N, Bhattacharyya KG (2013) Cu(II)-kaolinite and Cu(II)-montmorillonite as catalysts for wet oxidative degradation of 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol. Chem Eng J 233:88–97

    Article  CAS  Google Scholar 

  • Lai B, Zhang YH, Chen ZY, Yang P, Zhou YX, Wang JL (2014) Removal of P-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles. Appl Catal B Environ 144:816–830

    Article  CAS  Google Scholar 

  • Li T, Chen XH, Yang WJ, Zhou GL (2018) Controllable synthesis and properties of nano-CeO2. J Iran Chem Soc 15:2637–2647

    Article  CAS  Google Scholar 

  • Liotta LF, Gruttadauria M, Carlo GD, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    Article  CAS  Google Scholar 

  • Liu Y, Sun DZ (2007) Effect of CeO2 doping on catalytic activity of Fe2O3/α-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. J Hazard Mater 143:448–454

    Article  CAS  Google Scholar 

  • Massa P, Ivorra F, Haure P, Fenoglio R (2011) Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. J Hazard Mater 190:1068–1073

    Article  CAS  Google Scholar 

  • Melero JA, Calleja G, Martínez F, Molina R (2006) Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes. Catal Commun 7:478–483

    Article  CAS  Google Scholar 

  • Munoz M, Pedro ZM, Casas JA, Rodriguez JJ (2011) Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. J Hazard Mater 190:993–1000

    Article  CAS  Google Scholar 

  • Munoz M, Pedro ZM, Pliego G, Casas JA, Rodriguez JJ (2012) Chlorinated byproducts from the Fenton-like oxidation of polychlorinated phenols. Ind Eng Chem Res 51:13092–13099

    Article  CAS  Google Scholar 

  • Munoz M, Pedro ZM, Casas JA, Rodriguez JJ (2013a) Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chem Eng J 228:646–654

    Article  CAS  Google Scholar 

  • Munoz M, Pedro ZM, Menendez N, Casasa JA (2013b) A ferromagnetic α-alumina-supported iron catalyst for CWPO application to chlorophenols. Appl Catal B Environ 136–137:218–224

    Article  Google Scholar 

  • Prihod’ko R, Stolyarova I, Gündüz G, Taran O, Yashnik S, Parmon V, Goncharuk V (2011) Fe-exchanged zeolites as materials for catalytic wet peroxide oxidation degradation of rodamine G dye. Appl Catal B Environ 104:201–210

    Article  Google Scholar 

  • Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A, Rodríguez JJ (2009) Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface. Appl Catal B Environ 86:69–77

    Article  CAS  Google Scholar 

  • Rueda-Márquez JJ, Sillanpää M, Pocostales P, Acevedo A, Manzano MA (2015) Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes, photolysis and catalytic wet oxidation. Water Res 71:85–96

    Article  Google Scholar 

  • Selvamani A, Shanthi K, Santhanaraj D, Babu CM, Srinivasan VV, Thirukumaran P, Ramkumar V, Shakilaparveen A, Balasubramanian R (2018) Effective removal of automobile exhausts over flower-like Ce1–xCuxO2 nanocatalysts exposed active {100} plane. J Rare Earths 36:603–612

    Article  CAS  Google Scholar 

  • Shi LM, Zhang G, Wang YJ (2018) Tailoring catalytic performance of carbon nanotubes confined CuO-CeO2 catalysts for CO preferential oxidation. Int J Hydrog Energ 43:18211–18219

    Article  CAS  Google Scholar 

  • Subbaramaiah V, Srivastava VC, Mall ID (2013) Optimization of reaction parameters and kinetic modeling of catalytic wet peroxidation of picoline by cu/SBA–15. Ind Eng Chem Res 52:9021–9029

    Article  CAS  Google Scholar 

  • Valkaj KM, Katović A, Zrnčević S (2011) Catalytic properties of Cu/13x zeolite based catalyst in catalytic wet peroxide oxidation of phenol. Ind Eng Chem Res 50:4390–4397

    Article  CAS  Google Scholar 

  • Xu LJ, Wang JL (2012a) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46:10145–10153

    Article  CAS  Google Scholar 

  • Xu LJ, Wang JL (2012b) Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B Environ 123–124:117–126

    Article  Google Scholar 

  • Zazo JA, Casas JA, Molina CB, Quintanilla A (2007) Evolution of ecotoxicity upon Fenton’s oxidation of phenol in water. Environ Sci Technol 41:7164–7170

    Article  CAS  Google Scholar 

  • Zeng J, Zhou GL, Ai YM, Li N, Zhang GZ (2013) Catalytic wet peroxide oxidation of chlorophenol over a Ce0.86Cu0.14-xO2 catalyst. Int J Chem React Eng 11:577–585

    Article  Google Scholar 

  • Zhong X, Barbier J Jr, Duprez D, Zhang H, Royer S (2012) Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: effect on the activity for the CWPO of phenol reaction. Appl Catal B Environ 121–122:123–134

    Article  Google Scholar 

  • Zhou GL, Lan H, Yang XQ, Du QX, Xie HM, Fu M (2013) Effects of the structure of Ce-Cu catalysts on the catalytic combustion of toluene in air. Ceram Int 39:3677–3683

    Article  CAS  Google Scholar 

  • Zhou GL, Gui BG, Xie HM, Yang F, Chen Y, Chen SM, Zheng XX (2014a) Influence of CeO2 morphology on the catalytic oxidation of ethanol in air. J Ind Eng Chem 20:160–165

    Article  CAS  Google Scholar 

  • Zhou GL, Lan H, Gao TT, Xie HM (2014b) Influence of Ce/Cu ratio on the performance of ordered mesoporous CeCu composite oxide catalysts. Chem Eng J 246:53–63

    Article  CAS  Google Scholar 

  • Zhou GL, Lan H, Xie HM (2014c) Effects of preparation method on CeCu oxide catalyst performance. RSC Adv 4:50840–50850

    Article  CAS  Google Scholar 

  • Zhou GL, Dai BC, Xie HM, Zhang GZ, Xiong K, Zheng XX (2017) CeCu composite catalyst for CO synthesis by reverse water-gas shift reaction: effect of Ce/Cu mole ratio. J CO2 Util 21:292–301

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0293) and Research Foundation of Chongqing Technology and Business University (No. 1952017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilin Zhou.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Zeng, J. & Zhou, G. CeCu composite oxide for chlorophenol effective removal by heterogeneous catalytic wet peroxide oxidation. Environ Sci Pollut Res 27, 846–860 (2020). https://doi.org/10.1007/s11356-019-07042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07042-5

Keywords