Skip to main content

Advertisement

Log in

Oxidative stress, biochemical, lipid peroxidation, and antioxidant responses in Clarias gariepinus exposed to acute concentrations of ivermectin

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The short-term effects of ivermectin (IVMT) on the oxidative stress and biochemical parameters of Clarias gariepinus juvenile was assessed under semi-static conditions at concentrations of 9 to 25 μg L−1 for up to 4 days. Juveniles were highly sensitive to ivermectin, with an LC50 of 15 μg L−1.The antioxidant enzyme profile assessed included glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). General stress biomarkers such as serum glucose, protein, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were also determined at 24-h, 48-h, 72-h, and 96-h exposure durations. Lipid peroxidation showed significant (p < 0.05) decreases in higher concentrations (21 μg L−1and 25 μg L−1) and durations of exposure (72 h and 96 h). Significant concentration-dependent increases (p < 0.05) were recorded in the liver function enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) when compared to the control. GPx decreased significantly (p < 0.05) in higher concentrations (21 μg L−1and 25 μg L−1) and durations of exposure (48–96 h). Protein showed significant concentration-dependent decreases, while glucose recorded a mixed trend. The changes in the hepatic antioxidant enzyme activities and serum metabolites were indicative of oxidative stress induced by IVMT. This showed that IVMT is toxic to fish and should be used with utmost caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Ajima MNO, Pandey PK, Kumar K, Poojary N (2017) Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to verapamil. Comp Biochem Physiol C 196:44–52

    CAS  Google Scholar 

  • Altinok I, Capkin E, Boran H (2012) Mutagenic, genotoxic and enzyme inhibitory effects of carbosulfan in rainbow trout Oncorhynchus mykiss. Pestic Biochem Physiol 102:61–67

    CAS  Google Scholar 

  • APHA [American Public Health Association] American Water Works Association and Water Pollution Control Federation (APHA/AWWA/WEF) (2005) Standard methods of examination of water and wastewater, 21st edn. APHA, Washington

    Google Scholar 

  • Arise RO, Malomo SO (2009) Effects of ivermectin and albendazole on some liver and kidney function indices in rats. Afr J Biochem Res 3(5):190–197

    CAS  Google Scholar 

  • Athanassopoulou FV, Ragias V, Roth M, Liberis N, Hattzinnikolau S (2002) Toxicity and pathological effects of orally and intraperitoneally administered ivermectin on sea bass Dicentrarchus labrax. Dis Aquat Organ 52:69–76

    CAS  Google Scholar 

  • BIO [Intelligence Service] (2013) Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers. Pp 184–200

  • Black KD, Fleming S, Nickell TD, Pereira PMF (1997) The effects of ivermectin, used to control sea lice on caged farmed salmonids, on infaunal polychaetes. ICES J Mar Sci 54:276–279

    Google Scholar 

  • Blahova J, Plhalova L, Hostovsky M (2013) Oxidative stress responses in Zebra fish Danio rerio after sub-chronic exposure to atrazine. Food Chem Toxicol 61:82–85. https://doi.org/10.1016/j.fct.2013.02.041

    Article  CAS  Google Scholar 

  • Boonstra H, Reichman EP, vanden Brink PJ (2011) Effects of the veterinary pharmaceutical ivermectin in the indoor aquatic microcosms. Arch Environ Contam Toxicol 60:77–89

    CAS  Google Scholar 

  • Boxall ABA (2010) Veterinary medicines and the environment. Comp Vet Pharmacol Handb Exp Pharmacol 199:291–313

    CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    CAS  Google Scholar 

  • Campbell WC, Fisher MH, Stapley EO, Albers-Schonberg G, Jacob TA (1983) Ivermectin: a potent new antiparasitic agent. Science 221:823–828

    CAS  Google Scholar 

  • Campell WC (1989) Ivermectin and abamectin. Springer-Verlag, New York

    Google Scholar 

  • Carlsson G, Patring J, Kreuger J, Norrgren L, Oskarsson A (2013) Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos. Aquat Toxicol 126:30–41

    CAS  Google Scholar 

  • CCREM (1991) Canadian water quality guidelines. Ottawa, Canadian Council of Resources and Environmental Ministry, Inland Waters Directorate, Environment Canada

    Google Scholar 

  • Cooper GR, McDaniel V (1970) The determination of glucose by the O-toluidine method. Stand Method Clin Chem 6:159–162

    CAS  Google Scholar 

  • CWQC [Committee on Water Quality Criteria] (1972) A report of the committee on water quality research series, EPA-R3–73–003, US Environmental Protection Agency report. Cincinnati, CWQC

    Google Scholar 

  • Das BK, Mukherjee SC (2003) Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical enzymatic and haematological consequences. Comparative biochemistry physiology part C. Toxicol Pharmacol 134:109–121

    Google Scholar 

  • Didier AD, Loor F (1995) Decreased biotolerability for ivermectin and cyclosporin A in mice exposed to potential P-glycoprotein inhibitors. Int J Cancer 63:263–267

    CAS  Google Scholar 

  • Dybas RA (1989) Abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer-Verlag, New York, pp 287–310

    Google Scholar 

  • Duce IR, Scott RH (1985) Actions of dihydro-avermectin BIa on insect muscle. Brit J of Pharmacol 85(2):395–401

  • FAO (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO

  • Finney YT (1971) Probit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Forbes AB (1993) A review of regional and temporal use of avermectins in cattle and horses worldwide. Vet Parasitol 48:19–28

    CAS  Google Scholar 

  • Fraisal ASR (2003) Adverse effects of some antimicrobial agents used in fish. Unpublished Ph.D. Thesis. Faculty of Veterinary Medicine, Cairo University Cairo. pp238

  • Geary TG, Moreno (2011) Macrocyclic lactone anthelmintics: Spectrum of activity and mechanism of action. Curr Pharmaceut Biotech 13(6):8662–872

  • Gonzalez-Rey M, Bebianno MJ (2012) Does non-steroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis? Environ Toxicol Pharmacol 33:361–371

    CAS  Google Scholar 

  • Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  Google Scholar 

  • Hally BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: Environmental effect and fate. Chemos 18:1543–1563

  • Halley BA, VandenHeuvel WFA, Wislocki PG (1993) Environmental effects of the usage of avermectins in livestock. Vet Parasitol 48(1–4):109–125

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) In: free radicals in biology and medicine, Oxford University press, Oxford; pp. 543

  • Hart WB, Weston RF, Demann JG (1948) An apparatus for oxygenating test solution in which fish are used as test animals for evaluating toxicity. Trans Am Fish Soc 75:288–295

    Google Scholar 

  • Hoy T, Horsberg TE, Nafstad I (1990) The deposition of ivermectin in Atlantic salmon (Salmo salar L). Basic Clin Pharmacol Toxicol 67(4):307–312

    CAS  Google Scholar 

  • Iglesias A, Nebot C, Miranda JM, Vazquez BI, Cepeda A (2012) Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tendem mass spectrometry. Environ Sci Pollut Res 19:3235–3249

  • Iheanacho SC, Ikwo TN, Igweze NO, Chukwurdha C, Ogueji EO, Onyeneke R (2018) Effects of different inclusion levels of melon seed (Citrullus canatus) peel on growth, haematology and histology of Oreochromis niloticus juvenile. Turk J Fish Aquat Sci 18(3):379–384

    Google Scholar 

  • IJC (1977) New and Revised Great Lakes Water Quality Objectives. Great Lake Basin, Windsor. IJC, Ottawa

    Google Scholar 

  • Iqbal S, Suhel P, Suwarna P, Bilal B, Rizwanul H, Sheikh R (2003) Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus. Ecotoxicol Environ Saf 56:295–299

    Google Scholar 

  • Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Neri-Cruz N, Dublán-García O (2014) Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. Environ Sci Pollut Res 21:5157–5166. https://doi.org/10.1007/s11356-013-2477-0

    Article  CAS  Google Scholar 

  • Johnson SC, Margolis L (1993) Efficacy of ivermectin for control of the salmon louse Lepeophtheirus salmonis on Atlantic salmon. Dis Aquat Org 17:101–105

    CAS  Google Scholar 

  • Kegley SE, Hill BR, Orme S, Choi AH (2016) PAN Pesticide Database, pesticide action network, North America (Oakland, CA,).http:www.pesticideinfo.org

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71:952–958

    CAS  Google Scholar 

  • Lowry OH, Resebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lumeret JP (2012) A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol 13:1004–1060

    Google Scholar 

  • Luskova V, Svoboda M, Kolarova J (2002) The effects of Diazinon on Blood Plasma Biochemistry in Carp (Cyprinus carpio L). Acta Veterinaria Brno 71:117–123

    CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  • NAS/NAE (1973) Water quality criteria, EPA-R3–033. US Government Printing Office, Washington

    Google Scholar 

  • Nwani CD, Somdare PO, Ogueji EO, Nwani JC, Ukonze JA, Nwadinigwe AO (2017) Genotoxicity assessment and oxidative stress responses in freshwater African catfish Clarias gariepinus exposed to fenthion formulations. Drug Chem Toxicol 40(3):273–280

    CAS  Google Scholar 

  • Ogueji EO, Nwani CD, Iheanacho SC, Mbah CE, Okeke OC, Ibrahim BU (2017a) Acute toxicity of ibuprofen on selected biochemical and oxidative stress parameters of liver in Clarias gariepinus juveniles (Burchell, 1822). J Entomol Zool Stud 5(4):1060–1068

    Google Scholar 

  • Ogueji EO, Nwani CD, Iheanacho SC, Mbah CE, Okeke OC, Ibrahim BU (2017b) Toxicity of diazepam on lipid peroxidation, biochemical and oxidative stress indicators on liver and gill tissues of African catfish Clarias gariepinus (Burchell, 1822). Int J Fish Aquat Stud 5(3):114–123

    Google Scholar 

  • Oliveira R, Grisolia CK, Monteiro MS, Soares AMVM, Domingues I (2016) Multilevel assessment of ivermectin effects using different zebrafish life stages. Comp Biochem and Physiol, Part C 187:50–61. https://doi.org/10.1016/j.cbpc.2016.04.004

  • Pereira L, Fernandez MN, Martinez CBR (2013) Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicide clomazone. Environ Toxicol Pharmacol 36:1–8

    CAS  Google Scholar 

  • Prasse C, Loffler D, Ternes TA (2009) Environmental fate of the anthelmintic ivermectin in an aerobic sediment/water system. Chemosphere 77:1321–1325

    CAS  Google Scholar 

  • Rauf A, Arain N (2013) Acute toxicity of diazinon and its effects on hematological parameters in the Indian carp, Cirrhinus mrigala (Hamilton). Turk J Vet Anim Sci 37:535–540

    CAS  Google Scholar 

  • Reish DL, Oshida P S (1987) Manual of methods in aquatic environment research Part 10 . Short term static bioassay FAO fisheries. Technical paper 247 FAO Rome 1- 62pp

  • Roberts RJ, Johnson KA, Casten MT (2004) Control of Salmincola forniensis (Copepoda: Lernaeapodidae) in rainbow trout, Oncorhynchus mykiss (Walbaum): a clinical and histopathological study. J Fish Dis 27(2):73–79

    CAS  Google Scholar 

  • Saravanan M, Ramesh M (2013) Short and long-term effects of clofibric acid and diclofenac on certain biochemical and ionoregulatory responses in an Indian major carp, Cirrhinus mrigala. Chemosphere 93:388–396

    CAS  Google Scholar 

  • Saravanan M, Devi KU, Malarvizhi A, Ramesh M (2012) Effects of ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ Toxicol Pharmacol 34:14–22

    CAS  Google Scholar 

  • Serafini S, Sauza FC, Baldisserotto DM, Picoli F, Segat JC, Baretta D, Silva AS (2019) Fish exposed to eprinomectin show hepatic oxidative stress and impairment in enzymes of the phosphotransfer network. Aquaculture 508:199–205

    CAS  Google Scholar 

  • Sharma SK, Krishna-Murti CR (1968) Production of lipid peroxides by brain. J Neurochem 15:147–149

    CAS  Google Scholar 

  • Shoeb Q (2013) Biochemical toxicity of Ivermectin in Wistar albino rats. Am Eurasian J Toxicol Sci 5(1):15–19

    Google Scholar 

  • Shoop W, Soll M (2002) Ivermectin, abamectin and eprinomectin. In: Vercruysse J, Rew RS (eds) Macrocyclic lactones in antiparasitic therapy. Cabi, Oxon, pp 1–29

    Google Scholar 

  • Somdare PO, Nwani CD, Nwadinigwe AO, Nwani JC, Odo GE, Ugbor ON, Ukonze JA, Ezeibe AB (2015) Fenthion induced toxicity and histopathological changes in gill tissue of freshwater African catfish, Clarias gariepinus (Burchell, 1822). Afr J Biotechnol 14(25):2103–2113

    CAS  Google Scholar 

  • Sprague JB (1977) Measurement of pollutant toxicity to fish: in: bioassay methods for acute toxicity. Water Res 3:793–821

    Google Scholar 

  • Thiripurasundari M, Sathya K, Uma A, Srinivasan MR, Rajasekar P (2014) A comparative study on the toxicity of ivermectin in zebra fish and catla fish models. Indo Am J Pharm Res 4(09):87–89

    Google Scholar 

  • Ucan-Marin F, Ernst W, KeithO’Dor R, Sherry J (2012) Effect of food borne ivermectin on juvenile Atlantic salmon (Salmo salar L). Survival, growth, behavior and physiology. Aquaculture 334(337):169–175

    Google Scholar 

  • Varo I, Rigos G, Navarro JC, Delramo J, Calduchginer J, Hernandez A, Pertusa J, Torreblanga A (2010) Effect of ivermectin on the Gilthead seabream Sparus aurata: a proteomic approach. Chemosphere 80(5):570–577

    CAS  Google Scholar 

  • Wedemeyer G, Mcleay DJ, Goodyear CP (1984) Assessing the tolerance of fish and fish population to environmental stress. The problems and methods of monitoring. In: Cairnus WV, Hodson PV, Nriagu JO (eds) 164-195ppContaminate effects on fisheries. John Wiley and son Inc, New York

    Google Scholar 

  • Zhang JF, Shen H, Wang XR, Wu JC, Xue YQ (2004) Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 5:167–174

    Google Scholar 

Download references

Funding

This work was supported by the Tetfund Nigeria and Alex Ekwueme Federal University Ndufu-Alike Ikwo (AE-FUNAI) under grant (Ref. No. 002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Ogueji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Thomas Braunbeck

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogueji, E., Nwani, C., Mbah, C. et al. Oxidative stress, biochemical, lipid peroxidation, and antioxidant responses in Clarias gariepinus exposed to acute concentrations of ivermectin. Environ Sci Pollut Res 27, 16806–16815 (2020). https://doi.org/10.1007/s11356-019-07035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07035-4

Keywords

Navigation