Abstract
Air quality data from Bogotá, Colombia, show high levels of particulate matter (PM), which often generate respiratory problems to the population and a high economic cost to the government. Since 2016, air quality in the city of Bogotá has been measured through the Bogota Air Quality Index (IBOCA) which works as an indicator of environmental risk due to air pollution. However, available technological tools in Bogotá are not enough to generate early alerts due to PM10 and PM2.5. Currently, alerts are only announced once the measured PM values exceed a certain standard (e.g., 37 μ g/m3), but not with enough anticipation to efficiently protect the population. It is necessary to develop an early air quality alert in Bogotá, in order to provide information that improves risk management protocols in the capital district. The purpose of this investigation is to validate the corrective alert presented on the 14th and 15th of February of 2019, through the WRF-Chem model under different weather conditions, using three different setups of the model to simulate PM10 and PM2.5 concentrations during two different climatic seasons and different resolutions. The results of this article generate a validation of two configurations of the model that can be used for the Environmental Secretary of the District (SDA) forecasts in Bogotá, Colombia, in order to contribute to the prediction of pollution events produced by PM10 and PM2.5 as a tool for an early alert system (EAS) at least 24 h in advance.






Similar content being viewed by others
Notes
IGAC: Entity in charge of producing the official map and basic cartography of Colombia; one of its roles is to produce, research, regulate, make available, and publish the geographic, cartographic, agrological, cadastral, geodesic, and geospatial technological information
References
Baklanov A, Schlünzen K, Suppan P, Baldasano J, Brunner D, Aksoyoglu S, Carmichael G, Douros J, Flemming J, Forkel R, Galmarini S, Gauss M, Grell G, Hirtl M, Joffre S, Jorba O, Kaas E, Kaasik M, Kallos G, Kong X, Korsholm U, Kurganskiy A, Kushta J, Lohmann U, Mahura A, Manders-Groot A, Maurizi A, Moussiopoulos N, Rao S T, Savage N, Seigneur C, Sokhi R S, Solazzo E, Solomos S, Sørensen B, Tsegas G, Vignati E, Vogel B, Zhang Y (2014) Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmosph Chem Phys 14 (1):317–398. https://doi.org/10.5194/acp-14-317-2014
Behrentz E, Rojas N, Osorio D, Uscategui N (2006) Concentraciones de material particulado respirable suspendido en el aire en inmediaciones de una vía de transporte público colectivo. Technical report, Corporación Ambiental Empresarial de la Cámara de Comercio de Bogotá, Universidad de los Andes
Behrentz E, Franco J, Obando D, Quijano J (2008) Caracterización de la exposición de contaminantes atmosféricos en ambientes interiores relacionados con el uso de gasodomésticos. Technical report, Gas Natural S.A. Universidad de los Andes
Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117(8):1872–1890
CONPES (2018) Documento conpes 3946. consejo nacional de politica economica y social república de colombia. Technical report, Departamento Nacional de Planeación
Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107
ELIOVAC (1996) Determinación de los lugares de instalación de las estaciones remotas. Tech. rep., Report DAMA Contract 042, Numeral 4
Fast J D, Gustafson Jr W I, Easter R C, Zaveri R A, Barnard J C, Chapman E G, Grell G A, Peckham S E (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J Geophys Res Atmosph, 111, D21. https://doi.org/10.1029/2005JD006721
Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmosph Pollut Res 9(5):912–922. https://doi.org/10.1016/j.apr.2018.02.006
Gaitán M, Cancino J, Behrentz E (2007) Análisis del estado de la calidad del aire en Bogotá. Revista de Ingeniería
Gao Y, Ji H (2018) Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: one-year measurement in a densely populated area of urban beijing. Atmosph Res 212:213–226. https://doi.org/10.1016/j.atmosres.2018.04.027
Gilliland E, Rowe C (2007) A comparison of cumulus parameterization scheme in the WRF model. AMS Annual Meeting, 87, and Conference on Hydrology 21. TX Proceedings San Antonio, San Antonio
González Duque C (2017) Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte químico on-line. caso de estudio: Manizales, Colombia. PhD thesis, ingeniería química – Linea de investigación. Ingeníeria Ambiental, Universidad Nacional de Colombia - Sede Manizales
González C, Ynoue R, Vara-Vela A, Rojas N, Aristizábal B (2018) High-resolution air quality modeling in a medium-sized city in the tropical Andes: assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmosphe Pollut Res 9(5):934–948. https://doi.org/10.1016/j.apr.2018.03.003
Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):38–1–38–4. https://doi.org/10.1029/2002GL015311
Grell G, Knoche R, Peckham S, McKeen S (2004) Online versus offline air quality modeling on cloud-resolving scales. Geophys Res Lett 31(16):1. https://doi.org/10.1029/2004GL020175
Grell G, Peckham S, Schmitz R, McKeen S, Frost G, Skamarock W, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39(37):6957–6975
Grell G, Baklanov A (2011) Integrated modeling for forecasting weather and air quality: a call for fully coupled approaches. Atmos Environ 45:6845–6851. https://doi.org/10.1016/j.atmosenv.2011.01.017
Hernandez-Deckers D, Sherwood S C (2016) A numerical investigation of cumulus thermals. J Atmos Sci 73(10):4117–4136. https://doi.org/10.1175/JAS-D-15-0385.1
Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Hong S Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. https://doi.org/10.1175/MWR3199.1
IDEAM (2018) Informe del estado de la calidad del aire en Colombia 2017. Technical report, Instituto de Hidrologá, Meteorología y Estudios Ambientales 2016
Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051, atmospheric Environment - Fifty Years of Endeavour
Janssens-Maenhout G, Dentener F, van Aardenne J, Monni S, Pagliari V, Orlandini L, Klimont Z, Kurokawa J, Akimoto H, O’Hara T, Wankmueller R, Battye B, Grano D, Zuber A, Keating T (2012) Edgar-htap: A harmonized gridded air pollution emission dataset based on national inventories. https://doi.org/10.2788/14102, http://pure.iiasa.ac.at/id/eprint/10114/
Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Kumar A, Jiménez R, Belalcázar L C, Roja N Y (2016) Application of WRF-Chem model to simulate PM10 concentration over Bogotá. Aerosol Air Quality Res 16(5):1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318
Longo K M, Freitas S R, Pirre M, Marecal V, Rodrigues L F, Panetta J, Alonso M F, Rosario N E, Moreira D S, Gacita M S, Arteta J, Fonseca R, Stockler R, Katsurayama D M, Fazenda A, Bela M (2013) The chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research. Geosci Model Dev 6(5):1389–1405. https://doi.org/10.5194/gmd-6-1389-2013
Maji S, Ghosh S, Ahmed S (2018) Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. Int J Environ Health Res 28(5):471–490. https://doi.org/10.1080/09603123.2018.1487045
Méndez Espinosa J, Pinto Herrera L, Galvis Remolina B, Pachon Quinche J (2017) Estimación de factores de emisión de material particulado resuspendido antes, durante y después de la pavimentación de una de una vía en bogotá. Ciencia Ingenieria Neogranadina 27:43–60
Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102 (D14):16663–16682. https://doi.org/10.1029/97JD00237
National Oceanic and Atmospheric Administration (2018) Global Forecast System (GFS). https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
Olivier J, van Aardenne J, Dentener f, Pagliari V, Ganzeveld L, Peters J (2005) Recent trends in global greenhouse gas emissions: regional trends 1970-2000 and spatial distribution of key sources in 2000. Environ Sci 2(2-3):81–99. https://doi.org/10.1080/15693430500400345
Ortíz Durán E, Rojas Roa N (2013) Estimación de los beneficios económicos en salud asociados a la reducción de PM10 en Bogotá. Revista de Salud Pú,blica 15:90–102. https://doi.org/10.15446/rsap
Park D, Oh M, Yoon Y, Park E, Lee K (2012) Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmos Environ 49:180–185. https://doi.org/10.1016/j.atmosenv.2011.11.064
Powers JG, Klemp JB, Skamarock WC, Davis CA, Dudhia J, Gill DO, Coen JL, Gochis DJ, Ahmadov R, Peckham SE, Grell GA, Michalakes J, Trahan S, Benjamin SG, Alexander CR, Dimego GJ, Wang W, Schwartz CS, Romine GS, Liu Z, Snyder C, Chen F, Barlage MJ, Yu W, Duda MG (2017) The weather research and forecasting model: overview, system efforts, and future directions. Bullet Amer Meteorol Soc 98(8):1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1
Rojas N, Galvis B (2005) Relación entre PM2.5 y PM10 en la ciudad de Bogotá. Rev Ing 22:54–60
SA Agency JIC, JICA (1992) The study on air pollution control plan in santafé de bogotá city area JICA, Tokio, Japón
von Schneidemesser E, Monks PS, Allan JD, Bruhwiler L, Forster P, Fowler D, Lauer A, Morgan WT, Paasonen P, Righi M, Sindelarova K, Sutton MA (2015) Chemistry and the linkages between air quality and climate change. Chem Rev 115(10):3856–3897. https://doi.org/10.1021/acs.chemrev.5b00089
Schoenberg Ferrier B (1994) A double-moment multiple-phase four-class bulk ice scheme. Part I: description. J Atmos Sci 51(2):249–280. https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2
SDA (2011) Plan Decenal de descontaminación del Aire para bogotá. Technical report, Secretaria Distrital de Ambiente(SDA), Alcaldía Mayor de Bogotá
SDA (2019) Calidad del aire en Bogotá. Tech. rep., Secretaria Distrital de Ambiente(SDA), Alcaldía Mayor de Bogotá. http://www.ambientebogota.gov.co/calidad-del-aire
Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H (2019) A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol Environ Saf 174:344–352. https://doi.org/10.1016/j.ecoenv.2019.02.086
Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Technical note -475+STR. https://doi.org/10.5065/D68S4MVH
Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115. https://doi.org/10.1175/2008MWR2387.1
Vargas F, Rojas N (2010) Chemical composition and mass closure for airborne particulate matter in Bogotá. Ing Invest 30:105–115
Westerlund J, Urbain J P, Bonilla J (2014) Application of air quality combination forecasting to Bogotá. Atmos Environ 89:22–28. https://doi.org/10.1016/j.atmosenv.2014.02.015
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Gerhard Lammel
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Casallas, A., Celis, N., Ferro, C. et al. Validation of PM10 and PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environ Sci Pollut Res 27, 35930–35940 (2020). https://doi.org/10.1007/s11356-019-06997-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-019-06997-9


