Skip to main content

Advertisement

Log in

Validation of PM10 and PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM

  • Urban Air Quality, Climate and Pollution: From Measurement to Modeling Applications
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Air quality data from Bogotá, Colombia, show high levels of particulate matter (PM), which often generate respiratory problems to the population and a high economic cost to the government. Since 2016, air quality in the city of Bogotá has been measured through the Bogota Air Quality Index (IBOCA) which works as an indicator of environmental risk due to air pollution. However, available technological tools in Bogotá are not enough to generate early alerts due to PM10 and PM2.5. Currently, alerts are only announced once the measured PM values exceed a certain standard (e.g., 37 μ g/m3), but not with enough anticipation to efficiently protect the population. It is necessary to develop an early air quality alert in Bogotá, in order to provide information that improves risk management protocols in the capital district. The purpose of this investigation is to validate the corrective alert presented on the 14th and 15th of February of 2019, through the WRF-Chem model under different weather conditions, using three different setups of the model to simulate PM10 and PM2.5 concentrations during two different climatic seasons and different resolutions. The results of this article generate a validation of two configurations of the model that can be used for the Environmental Secretary of the District (SDA) forecasts in Bogotá, Colombia, in order to contribute to the prediction of pollution events produced by PM10 and PM2.5 as a tool for an early alert system (EAS) at least 24 h in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. IGAC: Entity in charge of producing the official map and basic cartography of Colombia; one of its roles is to produce, research, regulate, make available, and publish the geographic, cartographic, agrological, cadastral, geodesic, and geospatial technological information

References

  • Baklanov A, Schlünzen K, Suppan P, Baldasano J, Brunner D, Aksoyoglu S, Carmichael G, Douros J, Flemming J, Forkel R, Galmarini S, Gauss M, Grell G, Hirtl M, Joffre S, Jorba O, Kaas E, Kaasik M, Kallos G, Kong X, Korsholm U, Kurganskiy A, Kushta J, Lohmann U, Mahura A, Manders-Groot A, Maurizi A, Moussiopoulos N, Rao S T, Savage N, Seigneur C, Sokhi R S, Solazzo E, Solomos S, Sørensen B, Tsegas G, Vignati E, Vogel B, Zhang Y (2014) Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmosph Chem Phys 14 (1):317–398. https://doi.org/10.5194/acp-14-317-2014

    Article  Google Scholar 

  • Behrentz E, Rojas N, Osorio D, Uscategui N (2006) Concentraciones de material particulado respirable suspendido en el aire en inmediaciones de una vía de transporte público colectivo. Technical report, Corporación Ambiental Empresarial de la Cámara de Comercio de Bogotá, Universidad de los Andes

  • Behrentz E, Franco J, Obando D, Quijano J (2008) Caracterización de la exposición de contaminantes atmosféricos en ambientes interiores relacionados con el uso de gasodomésticos. Technical report, Gas Natural S.A. Universidad de los Andes

  • Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117(8):1872–1890

    Article  Google Scholar 

  • CONPES (2018) Documento conpes 3946. consejo nacional de politica economica y social república de colombia. Technical report, Departamento Nacional de Planeación

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • ELIOVAC (1996) Determinación de los lugares de instalación de las estaciones remotas. Tech. rep., Report DAMA Contract 042, Numeral 4

  • Fast J D, Gustafson Jr W I, Easter R C, Zaveri R A, Barnard J C, Chapman E G, Grell G A, Peckham S E (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J Geophys Res Atmosph, 111, D21. https://doi.org/10.1029/2005JD006721

  • Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmosph Pollut Res 9(5):912–922. https://doi.org/10.1016/j.apr.2018.02.006

  • Gaitán M, Cancino J, Behrentz E (2007) Análisis del estado de la calidad del aire en Bogotá. Revista de Ingeniería

  • Gao Y, Ji H (2018) Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: one-year measurement in a densely populated area of urban beijing. Atmosph Res 212:213–226. https://doi.org/10.1016/j.atmosres.2018.04.027

  • Gilliland E, Rowe C (2007) A comparison of cumulus parameterization scheme in the WRF model. AMS Annual Meeting, 87, and Conference on Hydrology 21. TX Proceedings San Antonio, San Antonio

  • González Duque C (2017) Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte químico on-line. caso de estudio: Manizales, Colombia. PhD thesis, ingeniería química – Linea de investigación. Ingeníeria Ambiental, Universidad Nacional de Colombia - Sede Manizales

  • González C, Ynoue R, Vara-Vela A, Rojas N, Aristizábal B (2018) High-resolution air quality modeling in a medium-sized city in the tropical Andes: assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmosphe Pollut Res 9(5):934–948. https://doi.org/10.1016/j.apr.2018.03.003

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):38–1–38–4. https://doi.org/10.1029/2002GL015311

    Article  Google Scholar 

  • Grell G, Knoche R, Peckham S, McKeen S (2004) Online versus offline air quality modeling on cloud-resolving scales. Geophys Res Lett 31(16):1. https://doi.org/10.1029/2004GL020175

    Article  Google Scholar 

  • Grell G, Peckham S, Schmitz R, McKeen S, Frost G, Skamarock W, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39(37):6957–6975

    Article  CAS  Google Scholar 

  • Grell G, Baklanov A (2011) Integrated modeling for forecasting weather and air quality: a call for fully coupled approaches. Atmos Environ 45:6845–6851. https://doi.org/10.1016/j.atmosenv.2011.01.017

    Article  CAS  Google Scholar 

  • Hernandez-Deckers D, Sherwood S C (2016) A numerical investigation of cumulus thermals. J Atmos Sci 73(10):4117–4136. https://doi.org/10.1175/JAS-D-15-0385.1

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

    Article  Google Scholar 

  • Hong S Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  • IDEAM (2018) Informe del estado de la calidad del aire en Colombia 2017. Technical report, Instituto de Hidrologá, Meteorología y Estudios Ambientales 2016

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051, atmospheric Environment - Fifty Years of Endeavour

    Article  CAS  Google Scholar 

  • Janssens-Maenhout G, Dentener F, van Aardenne J, Monni S, Pagliari V, Orlandini L, Klimont Z, Kurokawa J, Akimoto H, O’Hara T, Wankmueller R, Battye B, Grano D, Zuber A, Keating T (2012) Edgar-htap: A harmonized gridded air pollution emission dataset based on national inventories. https://doi.org/10.2788/14102, http://pure.iiasa.ac.at/id/eprint/10114/

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  • Kumar A, Jiménez R, Belalcázar L C, Roja N Y (2016) Application of WRF-Chem model to simulate PM10 concentration over Bogotá. Aerosol Air Quality Res 16(5):1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318

  • Longo K M, Freitas S R, Pirre M, Marecal V, Rodrigues L F, Panetta J, Alonso M F, Rosario N E, Moreira D S, Gacita M S, Arteta J, Fonseca R, Stockler R, Katsurayama D M, Fazenda A, Bela M (2013) The chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research. Geosci Model Dev 6(5):1389–1405. https://doi.org/10.5194/gmd-6-1389-2013

    Article  Google Scholar 

  • Maji S, Ghosh S, Ahmed S (2018) Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. Int J Environ Health Res 28(5):471–490. https://doi.org/10.1080/09603123.2018.1487045

    Article  CAS  Google Scholar 

  • Méndez Espinosa J, Pinto Herrera L, Galvis Remolina B, Pachon Quinche J (2017) Estimación de factores de emisión de material particulado resuspendido antes, durante y después de la pavimentación de una de una vía en bogotá. Ciencia Ingenieria Neogranadina 27:43–60

    Article  Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102 (D14):16663–16682. https://doi.org/10.1029/97JD00237

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (2018) Global Forecast System (GFS). https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs

  • Olivier J, van Aardenne J, Dentener f, Pagliari V, Ganzeveld L, Peters J (2005) Recent trends in global greenhouse gas emissions: regional trends 1970-2000 and spatial distribution of key sources in 2000. Environ Sci 2(2-3):81–99. https://doi.org/10.1080/15693430500400345

    Article  Google Scholar 

  • Ortíz Durán E, Rojas Roa N (2013) Estimación de los beneficios económicos en salud asociados a la reducción de PM10 en Bogotá. Revista de Salud Pú,blica 15:90–102. https://doi.org/10.15446/rsap

  • Park D, Oh M, Yoon Y, Park E, Lee K (2012) Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmos Environ 49:180–185. https://doi.org/10.1016/j.atmosenv.2011.11.064

  • Powers JG, Klemp JB, Skamarock WC, Davis CA, Dudhia J, Gill DO, Coen JL, Gochis DJ, Ahmadov R, Peckham SE, Grell GA, Michalakes J, Trahan S, Benjamin SG, Alexander CR, Dimego GJ, Wang W, Schwartz CS, Romine GS, Liu Z, Snyder C, Chen F, Barlage MJ, Yu W, Duda MG (2017) The weather research and forecasting model: overview, system efforts, and future directions. Bullet Amer Meteorol Soc 98(8):1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1

    Article  Google Scholar 

  • Rojas N, Galvis B (2005) Relación entre PM2.5 y PM10 en la ciudad de Bogotá. Rev Ing 22:54–60

  • SA Agency JIC, JICA (1992) The study on air pollution control plan in santafé de bogotá city area JICA, Tokio, Japón

  • von Schneidemesser E, Monks PS, Allan JD, Bruhwiler L, Forster P, Fowler D, Lauer A, Morgan WT, Paasonen P, Righi M, Sindelarova K, Sutton MA (2015) Chemistry and the linkages between air quality and climate change. Chem Rev 115(10):3856–3897. https://doi.org/10.1021/acs.chemrev.5b00089

    Article  CAS  Google Scholar 

  • Schoenberg Ferrier B (1994) A double-moment multiple-phase four-class bulk ice scheme. Part I: description. J Atmos Sci 51(2):249–280. https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2

    Article  Google Scholar 

  • SDA (2011) Plan Decenal de descontaminación del Aire para bogotá. Technical report, Secretaria Distrital de Ambiente(SDA), Alcaldía Mayor de Bogotá

  • SDA (2019) Calidad del aire en Bogotá. Tech. rep., Secretaria Distrital de Ambiente(SDA), Alcaldía Mayor de Bogotá. http://www.ambientebogota.gov.co/calidad-del-aire

  • Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H (2019) A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol Environ Saf 174:344–352. https://doi.org/10.1016/j.ecoenv.2019.02.086

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Technical note -475+STR. https://doi.org/10.5065/D68S4MVH

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115. https://doi.org/10.1175/2008MWR2387.1

    Article  Google Scholar 

  • Vargas F, Rojas N (2010) Chemical composition and mass closure for airborne particulate matter in Bogotá. Ing Invest 30:105–115

    CAS  Google Scholar 

  • Westerlund J, Urbain J P, Bonilla J (2014) Application of air quality combination forecasting to Bogotá. Atmos Environ 89:22–28. https://doi.org/10.1016/j.atmosenv.2014.02.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Casallas.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casallas, A., Celis, N., Ferro, C. et al. Validation of PM10 and PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environ Sci Pollut Res 27, 35930–35940 (2020). https://doi.org/10.1007/s11356-019-06997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06997-9

Keywords

Profiles

  1. Alejandro Casallas
  2. Ellie López Barrera