Skip to main content

Advertisement

Log in

Estimation of genomic instability and mutation induction by graphene oxide nanoparticles in mice liver and brain tissues

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The rapidly growing interest in using graphene-based nanoparticles in a wide range of applications increases human exposure and risk. However, very few studies have investigated the genotoxicity and mutagenicity of the widely used graphene oxide (GO) nanoparticles in vivo. Consequently, this study estimated the possible genotoxicity and mutagenicity of GO nanoparticles as well as possible oxidative stress induction in the mice liver and brain tissues. Nano-GO particles administration at the dose levels of 10, 20, or 40 mg/kg for one or five consecutive days significantly increased the DNA breakages in a dose-dependent manner that disrupts the genetic material and causes genomic instability. GO nanoparticles also induced mutations in the p53 (exons 6&7) and presenilin (exon 5) genes as well as increasing the expression of p53 protein. Positive p53 reaction in the liver (hepatic parenchyma) and brain (cerebrum, cerebellum, and hippocampus) sections showed significant increase of p53 immunostaining. Additionally, induction of oxidative stress was proven by the significant dose-dependent increases in the malondialdehyde level and reductions in both the level of reduced glutathione and activity of glutathione peroxidase observed in GO nanoparticles administered groups. Acute and subacute oral administration of GO nanoparticles induced genomic instability and mutagenicity by induction of oxidative stress in the mice liver and brain tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afzali M, Parivar K, Roodbari Nand Badiei A (2015) Study of Nano-Graphene oxide effects on the number of Kupffer cells and megakaryocytes in liver of NMRI strain mouse embryo in vivo. Current World Environment 10(1):713–718

    Article  Google Scholar 

  • Athan ES, Williamson J, Ciappa A, Santana V, Romas SN, Lee JH, Rondon H, Lantigua RA, Medrano M, Torres M, Arawaka S, Rogaeva E, Song YQ, Sato C, Kawarai T, Fafel KC, Boss MA, Seltzer WK, Stern Y, St George-Hyslop P, Tycko B, Mayeux R (2001) A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. JAMA. 286(18):2257–2263. https://doi.org/10.1001/jama.286.18.2257

    Article  CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  • Bjelland, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. MutatRes-Fundam Mol Mech Mutagen 531:37–80

    Article  CAS  Google Scholar 

  • Chaenyung C, Ryon SS, Xiguang G, Nasim A, Dokmeci MR, Xiaowu Shirley T et al (2014) Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 10(3):514–523. https://doi.org/10.1002/smll.201302182

    Article  CAS  Google Scholar 

  • Chen M, Yin J, Liang Y, Yuan S, Wang F, Song M, Wang H (2016) Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquat Toxicol 174(1879–1514 (electronic)):54–60

    Article  CAS  Google Scholar 

  • Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19(1):R12–R20

    Article  CAS  Google Scholar 

  • De Marzi L, Ottaviano L, Perrozzi F, Nardone M, Santucci S, De Lapuente J, Borras M, Treossi E, Palermo V, Poma A (2014) Flake size-dependent cyto and genotoxic evaluation of graphene oxide on in vitro A549, CaCo2 and vero cell lines. J Biol Regul Homeost Agents 28(2):281–289

    Google Scholar 

  • Ding Z, Zhang Z, Ma H, Chen Y (2014) In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin. ACS Appl Mater Interfaces 6(22):19797–19807 18

    Article  CAS  Google Scholar 

  • Dorszewska J, Oczkowska A, Suwalska M, Rozycka A, Florczak-Wyspianska J, Dezor M, Lianeri M, Jagodzinski P, Kowalczyk MJ, Prendecki M, Kozubski W (2014) Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer’s disease. Folia Neuropathol 52(1):30–40

    Article  CAS  Google Scholar 

  • El-Yamanya AN, Mohamed FF, Salaheldin TA, Tohamya AA, Abd El-Mohsena WN, Amine AS (2017) Graphene oxide nanosheets induced genotoxicity and pulmonary injury in mice. Exp Toxicol Pathol 69:383–392

    Article  Google Scholar 

  • Ferraro D, Anselmi-Tamburini U, Tredici IG, Ricci V, Sommi P (2016) Overestimation of nanoparticles-induced DNA damage determined by the comet assay. Nanotoxicology 10(7):861–870

    Article  CAS  Google Scholar 

  • Gautheron V, Auffret A, Mattson MP, Mariani J, Garabedian B V-d (2009) A new and simple approach forgenotyping Alzheimer’s disease presenilin-1 mutant knock-inmice. J Neurosci Methods 181(2):235–240

    Article  CAS  Google Scholar 

  • Guo X, Mei N (2014) Review Article:Assessment of the toxic potential of grapheme family nanomaterials. J Food Drug Anal 2 2:1 0 5–1 1 5

    Article  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914. https://doi.org/10.2147/IJN.S37397

    Article  CAS  Google Scholar 

  • Gutierrez MI, Bhatia K, Siwarski D, Wolff L, Magrath IT, Mushinski JF, Huppi K (1992) Infrequent p53 Mutation in Mouse Tumors with Deregulated myc. Cancer Res 52:1032–1035

    CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J HistochemCytochem 29(4):577–580

    CAS  Google Scholar 

  • Jarosz A, Skoda M, Dudek I, Szukiewicz D (2016) Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxidative Med Cell Longev 2016:5851035

    Article  Google Scholar 

  • Jasim DA, M’enard-Moyon C, B’egin D, Bianco A, Kostarelos K (2015) Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci 6:3952–3964

    Article  CAS  Google Scholar 

  • Jaworski S, Sawosz E, Grodzik M, Winnicka A, Prasek M, Wierzbicki M, Chwalibog A (2013) In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. Int J Nanomedicine 8:413–420

    Google Scholar 

  • Kelleher RJ, Shen J (2010) γ -Secretase and human disease. Science. 33(6007):1055–1056

    Article  Google Scholar 

  • Kurantowicz N, Strojny B, Sawosz E, Jaworski S, Kutwin M, Grodzik M, Chwalibog A (2015) Biodistribution of a high dose of diamond, graphite, and Graphene oxide nanoparticles after multiple Intraperitoneal injections in rats. Nanoscale Res Lett 10(1):398. https://doi.org/10.1186/s11671-015-1107-9

    Article  CAS  Google Scholar 

  • Lanoiselée HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 14(3):e1002270. https://doi.org/10.1371/journal.pmed.1002270

    Article  CAS  Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, grapheme oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  Google Scholar 

  • Liu Y, Luo Y, Wu J, Wang Y, Yang X, Yang R, Wang B, Yang J, Zhang N (2013) Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep 3:3469

    Article  Google Scholar 

  • Liu Z, Choi SW, Crott JW, Smith DE, Mason JB (2008) Multiple B-vitamin inadequacy amplifies alterations induced by folate depletion in p53 expression and its downstream effector MDM2. Int J Cancer 123(3):519–525

    Article  CAS  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    Article  CAS  Google Scholar 

  • Mendonça MC, Soares ES, de Jesus MB, Ceragioli HJ, Ferreira MS, Catharino RR, da Cruz-Höfling MA (2015) Reduced graphene oxide induces transient blood-brain barrier opening: an in vivo study. Journal of nanobiotechnology 13:78. https://doi.org/10.1186/s12951-015-0143-z

    Article  CAS  Google Scholar 

  • Nezakati T, Cousins BG, Seifalian AM (2014) REVIEW ARTICLE: Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol 88:1987–2012

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi W, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal. Biochem 95:351–358

    CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitativeand qualitative characterization of erythrocyte glutathioneperoxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Pan Y, Sahoo NG, Li L (2012) The application of graphene oxide in drug delivery. Expert Opin Drug Deliv 9(11):1365–1376. https://doi.org/10.1517/17425247.2012.729575

    Article  CAS  Google Scholar 

  • Recio L, Hobbs C, Caspary W, Witt KL (2010) Dose-response assessment of four genotoxic chemicals in a combined mouse and rat micronucleus (MN) and comet assay protocol. J Toxicol Sci 35(2):149–162

    Article  CAS  Google Scholar 

  • Ren H, Wang C, Zhang J, Zhou X, Xu D, Zheng J, Guo S, Zhang J (2010) DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 4(12):7169–7174

    Article  CAS  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Article  CAS  Google Scholar 

  • Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168

    Article  CAS  Google Scholar 

  • Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of Graphene. Theranostics 2(3):283–294

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson V, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  Google Scholar 

  • Waiwijit U, Kandhavivorn W, Oonkhanond B, Lomas T, Phokaratkul D, Wisitsoraat A, Tuantranont A (2014) Cytotoxicity assessment of MDA-MB-231 breast cancer cells on screen-printed graphene-carbon paste substrate. Colloids Surf B: Biointerfaces 113:190–197

    Article  CAS  Google Scholar 

  • Wang A, Pu K, Dong B, Liu Y, Zhang L, Zhang Z, Duan W, Zhu Y (2013) Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J Appl Toxicol 33:1156–1164

    Article  CAS  Google Scholar 

  • Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated Graphene in mice. ACS Nano 5(1):516–522. https://doi.org/10.1021/nn1024303

    Article  CAS  Google Scholar 

  • Zhang S, Yang K, Feng L, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49:4040–4049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks and great appreciation to the Department of Zoology, Faculty of Science, Cairo University, for providing us with the necessary equipment to conduct experiments of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan R. H. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.R.H., Welson, M., Yaseen, A.E. et al. Estimation of genomic instability and mutation induction by graphene oxide nanoparticles in mice liver and brain tissues. Environ Sci Pollut Res 27, 264–278 (2020). https://doi.org/10.1007/s11356-019-06930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06930-0

Keywords

Navigation