Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw

Abstract

Lignocellulosic materials are mainly consisted of lignin, cellulose, and hemicellulose. Lignin is recognized as the main obstacle for the enzymatic saccharification of cellulose towards the fermentable sugars’ production. Hence, the removal of lignin from the lignocellulosic feedstock is beneficial for reducing the recalcitrance of lignocellulose for enzymatic attack. For this purpose, various different alkaline pretreatments were examined in order to study their effect on the enzymatic saccharification of wheat straw, as a typical lignocellulosic material. Results revealed that the alkaline pretreatments promoted delignification reactions. Regarding the removal of lignin, the most efficient pretreatments were alkaline treatment with hydrogen peroxide 10% and NaOH 2% autoclave with delignification efficiencies of 89.60% and 84.86% respectively. X-ray diffraction analysis was performed to enlighten the structural changes of raw and pretreated materials. The higher the delignification of the raw material, the higher the conversion of cellulose during enzymatic saccharification. In all cases after enzymatic saccharification, the cellulosic conversion was much higher (32–77%) than the untreated wheat straw (8.6%). After undergoing alkaline peroxide 10% pretreatment and cellulase treatment, 99% of the initial raw straw was eventually solubilized. Thus, wheat straw could be considered as an ideal material for the production of glucose with proper pretreatments and effective enzymatic hydrolysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akhtar MS, Saleem M, Akhtar MW (2001) Saccharification of lignocellulosic materials by the cellulases of bacillus subtilis. Int J Agric Biol 3(2):99–202

    Google Scholar 

  2. Asghar U, Irfan M, Iram M, Huma Z, Nelofer R, Nadeem M, Syed Q (2015) Effect of alkaline pretreatment on delignification of wheat straw. Nat Prod Res 29(2):125–131. https://doi.org/10.1080/14786419.2014.964712

    CAS  Article  Google Scholar 

  3. Bolado-Rodríguez S, Toquero C, Martín-Juárez J, Travaini R, García-Encina PA (2016) Effect of thermal, acid, alkaline and alkaline peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour Technol 201:182–190. https://doi.org/10.1016/j.biortech.2015.11.047

    CAS  Article  Google Scholar 

  4. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value-added products. 3 Biotech 3(5):415–431. https://doi.org/10.1007/s13205-013-0167-8

    Article  Google Scholar 

  5. Feng L, Qin L, Liu ZH, Dong CY, Li BZ, Yuan YJ (2014) Combined severity during pretreatment chemical and temperature on the saccharification of wheat straw using acids and alkalis of differing strength. BioResour 9(1):24–38. https://doi.org/10.15376/biores.9.1.24-38

    CAS  Article  Google Scholar 

  6. Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26(1):46–52. https://doi.org/10.1002/bit.260260110

    CAS  Article  Google Scholar 

  7. Haque MA, Barman DN, Kang TH, Kim MK, Kim J, Kim H, Yun HD (2012) Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J Microbiol Biotechnol 22(12):1681–1691. https://doi.org/10.4014/jmb.1206.06058

    CAS  Article  Google Scholar 

  8. Ho MC, Ong VZ, Wu TY (2019) Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – a review. Renew Sust Energ Rev 112:75–86. https://doi.org/10.1016/j.rser.2019.04.082

    CAS  Article  Google Scholar 

  9. Hou XD, Feng GJ, Ye M, Huang CM, Zhang Y (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238:139–146. https://doi.org/10.1016/j.biortech.2017.04.027

    CAS  Article  Google Scholar 

  10. Jaisamut K, Paulová L, Patáková P, Kotúčová S, Rychtera M (2016) Effect of sodium sulfite on acid pretreatment of wheat straw with respect to its final conversion to ethanol. Biomass Bioenergy 95:1–7. https://doi.org/10.1016/j.biombioe.2016.08.022

    CAS  Article  Google Scholar 

  11. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

    CAS  Article  Google Scholar 

  12. Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278. https://doi.org/10.1016/j.biortech.2013.01.075

    CAS  Article  Google Scholar 

  13. Sanchez O, Sierra R, Almeciga-Diaz CJ (2011) Delignification process of agro-industrial wastes an alternative to obtain fermentable carbohydrates for producing fuel. In: Manzanera M (ed) Alternative Fuel. Rijeka, InTech, pp 111–154

    Google Scholar 

  14. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    CAS  Article  Google Scholar 

  15. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Nrel DC (2008) Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass. Lab Anal Proceed 1617:1–16

    Google Scholar 

  16. Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA (2018) Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 33:52–62. https://doi.org/10.1016/j.ejbt.2018.03.005

    CAS  Article  Google Scholar 

  17. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76. https://doi.org/10.1016/j.biortech.2014.01.090

    CAS  Article  Google Scholar 

  18. Tsegaye B, Balomajumder C, Roy P (2018) Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield. Environ Sci Pollut R 30:30585–30596. https://doi.org/10.1007/s11356-018-3056-1

    CAS  Article  Google Scholar 

  19. Vasmara C, Cianchetta S, Marchetti R, Galletti S (2017) Biogas production from wheat straw pre-treated with hydrolytic enzymes or sodium hydroxide. Environ Eng Manag J 16(8):1827–1836. https://doi.org/10.30638/eemj.2017.199

    CAS  Article  Google Scholar 

  20. Xin L, Guo Z, Xiao X, Peng C, Zeng P, Feng W, Xu W (2019) Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide. Environ Sci Pollut R 19:19434–19444. https://doi.org/10.1007/s11356-019-05195-x

    CAS  Article  Google Scholar 

  21. Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369. https://doi.org/10.1016/j.biortech.2015.11.002

    CAS  Article  Google Scholar 

  22. Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224. https://doi.org/10.1002/bit.25903

    CAS  Article  Google Scholar 

  23. Yu G, Afzal W, Yang F, Padmanabhan S, Liu Z, Xie H, Shafy M, Bell A, Prausnitz J (2014) Pretreatment of Miscanthus × giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J Chem Technol Biotechnol 89(5):698–706. https://doi.org/10.1002/jctb.4172

    CAS  Article  Google Scholar 

  24. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827. https://doi.org/10.1007/s00253-009-1883-1

    CAS  Article  Google Scholar 

  25. Zhao Z, Chen X, Ali MF, Abdeltawab AA, Yakout SM, Yu G (2018) Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour Technol 263:325–333. https://doi.org/10.1016/j.biortech.2018.05.016

    CAS  Article  Google Scholar 

  26. Zheng Q, Zhou T, Wang Y, Cao X, Wu S, Zhao M, Guan X (2018a) Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-19517-5

  27. Zheng Q, Zhou T, Wang Y, Cao X, Wu S, Zhao M, Wang H, Xu M, Zheng B, Guan X (2018b) Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci Rep 8(1):1321–1330. https://doi.org/10.1038/s41598-018-19517-5

    CAS  Article  Google Scholar 

Download references

Funding

The authors acknowledge funding through European Horizon 2020 NoAW (No Agro Waste, Grant no. 688338) project for supporting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Loizidou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kontogianni, N., Barampouti, E.M., Mai, S. et al. Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw. Environ Sci Pollut Res 26, 35648–35656 (2019). https://doi.org/10.1007/s11356-019-06822-3

Download citation

Keywords

  • Agro-residues
  • Alkaline peroxide
  • Cellulases
  • Crystallinity
  • Delignification efficiency
  • Lignin