Skip to main content
Log in

Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To reveal the adsorption mechanism of sediment to antibiotics with the presence of dissolved organic matter (DOM), batch experiments were carried out by oxytetracycline (OTC) on sediments with decayed plants (PDOM) and composted chicken manure (MDOM), and the zeta potential in the system before and after adsorption was measured. Results showed that the PDOM promoted the adsorption process, while the MDOM inhibited the adsorption. Adding PDOM, the change of zeta potential (Δζ) increased by 40.08% for first terrace sediments (FT) and 63.98% for riverbed sediments (RB), respectively; meanwhile, MDOM decreased by 20.04% for FT and 28.39% for RB, respectively. The results of kinetic fitting models of replacing the adsorption amount with Δζ were consistent with the initial. It indicated that there was a positive correlation between the adsorption amount and Δζ, and the zeta potential can be used to quickly judge the degree of adsorption process. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory describes the interactions of sediment particles. In terms of adsorption amount, zeta potential (absolute value) and total interaction energy all followed the order: RB > FT, RB-PDOM > FT-PDOM, and RB-MDOM > FT-MDOM. The more negative the zeta potential is, the better the dispersion of the particles is. Stronger repulsion is more conducive to adsorbing positively charged OTC. The site energy distribution theory further explained that the distribution of adsorption site in the various states of sediments increased while adding the PDOM and decreased while adding the MDOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beltran J, Hernandez F, Lopez FJ, Morell I (1995) Study of Sorption Processes of Selected Pesticides on Soils and Ceramic Porous Cups used For Soil Solution Sampling. Int J Environ Anal Chem 58:287–303. https://doi.org/10.1080/03067319508033131

    Article  CAS  Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Montserrat Filella A, Zhang J (1998) A Generalized Description of Aquatic Colloidal Interactions: The Three-colloidal Component Approach - Environmental Science & Technology (ACS Publications). Environ Sci Technol 32:2887–2899. https://doi.org/10.1021/es980217h

    Article  CAS  Google Scholar 

  • Calero J, Ontiveros-Ortega A, Aranda V, Plaza I (2017) Humic acid adsorption and its role in colloidal-scale aggregation determined with the zeta potential, surface free energy and the extended-DLVO theory. Eur J Soil Sci 68:491–503. https://doi.org/10.1111/ejss.12431

    Article  CAS  Google Scholar 

  • Caroni ALPF, Lima CRMD, Pereira MR, Fonseca JLC (2012) Tetracycline adsorption on chitosan: a mechanistic description based on mass uptake and zeta potential measurements. Colloids Surf B: Biointerfaces 100:222–228

    Article  CAS  Google Scholar 

  • Carter MC, Kilduff JE, Weber WJ (1995) Site energy distribution analysis of preloaded adsorbents. Environ Sci Technol 29:1773–1780

    Article  CAS  Google Scholar 

  • Chang P, Li Z, Jiang W, Jean JS (2009) Adsorption and intercalation of tetracycline by swelling clay minerals. Appl Clay Sci 46:27–36. https://doi.org/10.1016/j.clay.2009.07.002

    Article  CAS  Google Scholar 

  • Chen H, Jing L, Teng Y, Wang J (2018) Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks. Sci Total Environ 618:409–418

    Article  CAS  Google Scholar 

  • Dahshan H, Abd-Elall AMM, Megahed AM, Abd-El-Kader MA, Nabawy EE (2015) Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ Monit Assess 187:2

    Article  Google Scholar 

  • Ding J, Cheng Y, Hua Z, Yuan C, Wang XJ (2019) The Effect of Dissolved Organic Matter (DOM) on the Release and Distribution of Endocrine-Disrupting Chemicals (Edcs) from Sediment under Hydrodynamic Forces, A Case Study of Bisphenol A (BPA) and Nonylphenol (NP). Int J Environ Res Public Health 16:13. https://doi.org/10.3390/ijerph16101724

    Article  CAS  Google Scholar 

  • Dolui M, Rakshit S, Essington ME, Lefèvre G (2018) Probing Oxytetracycline Sorption Mechanism on Kaolinite in a Single Ion and Binary Mixtures with Phosphate using In Situ ATR-FTIR Spectroscopy. Soil Sci Soc Am J 82:826–838. https://doi.org/10.2136/sssaj2018.01.0020

    Article  CAS  Google Scholar 

  • Durán JDG, Ontiveros A, Delgado AV, González-Caballero F, Durán JDG (1998) Kinetics and interfacial interactions in the adhesion of colloidal calcium carbonate to glass in a packed-bed. Appl Surf Sci 134:125–138. https://doi.org/10.1016/S0169-4332(98)00217-7

    Article  Google Scholar 

  • Elimelech M, Nagai M, Chunhan K, Ryan JN (2000) Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ Sci Technol 34:2143–2148. https://doi.org/10.1021/es9910309

    Article  CAS  Google Scholar 

  • Ersoy B, Celik MS (2002) Electrokinetic properties of clinoptilolite with mono- and multivalent electrolytes. Microporous Mesoporous Mater 55:305–312. https://doi.org/10.1016/S1387-1811(02)00433-X

    Article  CAS  Google Scholar 

  • Fernández-Calviño D, Bermúdez-Couso A, Arias-Estévez M, Nóvoa-Muñoz JC, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A (2015) Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: stirred flow chamber experiments. Chemosphere 134:361–366

    Article  Google Scholar 

  • Figueroa RA, Leonard A, Mackay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  • Filella M (2007) Colloidal properties of submicron particles in natural waters. https://doi.org/10.1002/9780470024539.ch2

  • Graham ND, Stoll S, Loizeau JL (2014) Colloid characterization at the sediment-water interface of Vidy Bay, Lake Geneva. Fundam Appl Limnol 184(2):87–100. https://doi.org/10.1127/1863-9135/2014/0591

    Article  CAS  Google Scholar 

  • Han W, Luo L, Zhang S (2012) Adsorption of bisphenol A on lignin: effects of solution chemistry. Int J Environ Sci Technol 9:543–548. https://doi.org/10.1007/s13762-012-0067-1

    Article  CAS  Google Scholar 

  • Hu S, Wu Y, Yi N, Zhang S, Zhang Y, Xin X (2017) Chemical properties of dissolved organic matter derived from sugarcane rind and the impacts on copper adsorption onto red soil. Environ Sci Pollut Res 24:21750–21760. https://doi.org/10.1007/s11356-017-9834-3

    Article  CAS  Google Scholar 

  • Jia L, Hua Z, Yuan G (2018) Phosphate affects adsorption and desorption of oxytetracycline in the seawater-sediment systems. Environ Sci Pollut Res 25:1–9. https://doi.org/10.1007/s11356-018-2862-9

    Article  CAS  Google Scholar 

  • Jian Z, Feifei L, Zhenyu W, Xuesong C, Baoshan X (2015) Heteroaggregation of graphene oxide with minerals in aqueous phase. Environ Sci Technol 49:2849. https://doi.org/10.1021/es505605w

    Article  CAS  Google Scholar 

  • Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267–278. https://doi.org/10.1016/s0167-8809(01)00350-4

    Article  Google Scholar 

  • Jones AD, Bruland GL, Agrawal SG, Vasudevan D (2010) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770. https://doi.org/10.1897/04-037r.1

    Article  Google Scholar 

  • Kim Y, Lee KB, Choi K (2016) Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: a case study of Han River and Kyungahn Stream, South Korea. Mar Pollut Bull 107:347–354

    Article  CAS  Google Scholar 

  • Klein EY et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A 115:E3463–E3470. https://doi.org/10.1073/pnas.1717295115

    Article  CAS  Google Scholar 

  • Kulshrestha P Jr, Giese RF Jr, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  CAS  Google Scholar 

  • Li K, Liu G, Liu W (2003) Site-energy distribution analysis for adsorption of selected acetanilide herbicides in soils. Acta Pedol Sin 40:574–580 (In Chinese)

    CAS  Google Scholar 

  • Liu X, Li J, Huang Y, Wang X, Zhang X, Wang X (2017) Adsorption, aggregation, and deposition behaviors of carbon dots on minerals. Environ Sci Technol 51(11). https://doi.org/10.1021/acs.est.6b06558

  • Liu JJ, Dai C, Hu YD (2018) Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: effects of pH, cations, anions, and humic acid. Environ Res 161:49–60. https://doi.org/10.1016/j.envres.2017.10.045

    Article  CAS  Google Scholar 

  • Mei H, Lu X (2013) The quantitative description between zeta potential and fluorescent particle adsorption on Cu surface. Surf Interface Anal 46:56–60. https://doi.org/10.1002/sia.5348

    Article  CAS  Google Scholar 

  • Peng L, Wang Q, Xi L, Zhang C (2009) Zeta-potentials and enthalpy changes in the process of electrostatic self-assembly of cations on silica surface. Powder Technol 193:46–49. https://doi.org/10.1016/j.powtec.2009.02.006

    Article  CAS  Google Scholar 

  • Peng FJ, Ying GG, Liu YS, Su HC, He LY (2015) Joint antibacterial activity of soil-adsorbed antibiotics trimethoprim and sulfamethazine. Sci Total Environ 506-507:58–65

    Article  CAS  Google Scholar 

  • Pessagno RC, Sánchez RMT, Afonso MDS (2008) Glyphosate behavior at soil and mineral-water interfaces. Environ Pollut 153:53–59

    Article  CAS  Google Scholar 

  • Punamiya P, Sarkar D, Rakshit S, Elzinga EJ, Datta R (2016) Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals. Environ Sci Pollut Res 23:3322–3332. https://doi.org/10.1007/s11356-015-5551-y

    Article  CAS  Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452

    Article  CAS  Google Scholar 

  • Sheng G, Johnston CT, Teppen BJ, Boyd SA (2001) Potential contributions of smectite clays and organic matter to pesticide retention in soils. J Agric Food Chem 49:2899

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S (2005) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50(5):1415–1426. https://doi.org/10.4319/lo.2005.50.5.1415

    Article  CAS  Google Scholar 

  • Sun Z, Mao L, Xian Q, Yu Y, Li H, Yu H (2008) Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils. J Environ Sci 20:1075–1081

    Article  CAS  Google Scholar 

  • ter Laak TL, Wouter AG, Johannes T (2010) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environ Toxicol Chem 25:904–911. https://doi.org/10.1897/05-232r.1

    Article  Google Scholar 

  • Thiele-Bruhn S, Aust MO (2004) Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Contam Toxicol 47:31–39

    Article  CAS  Google Scholar 

  • Van Oss CJ (2006) Interfacial forces in aqueous media. https://doi.org/10.1016/0300-9440(95)90006-3

  • Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941. https://doi.org/10.1021/cr00088a006

    Article  Google Scholar 

  • Vane LM, Zang GM (1997) Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: implications for electro-kinetic soil remediation processes. Jhazardmater 55:1–22. https://doi.org/10.1016/s0304-3894(97)00010-1

    Article  CAS  Google Scholar 

  • Vold MJ (1982) Zeta potential in colloid science. Principles and applications : By R. J. Hunter , Academic Press, New York/London. 386 pp. $84.00. J Colloid Interface Sci 88:608–608. https://doi.org/10.1016/0021-9797(82)90296-X

    Article  Google Scholar 

  • Wang H, Gu G (2009) Surface free energy of solid matter and its hydrophilic/hydrophobic nature. Chemistry 72:1091–1096 (In Chinese)

    CAS  Google Scholar 

  • Wang Y, Chen G, Liang J, Zou Y, Wen X, Liao X, Wu Y (2015) Comparison of oxytetracycline degradation behavior in pig manure with different antibiotic addition methods. Environ Sci Pollut Res 22:18469–18476. https://doi.org/10.1007/s11356-015-5170-7

    Article  CAS  Google Scholar 

  • Wang ZZ, Jiang QL, Wang RZ, Yuan XY, Yang SK, Wang WK, Zhao YQ (2018) Effects of dissolved organic matter on sorption of oxytetracycline to sediments. Geofluids 1–12. https://doi.org/10.1155/2018/1254529

  • Wang B et al (2019) Adsorption behaviors of phenanthrene and bisphenol A in purple paddy soils amended with straw-derived DOM in the West Sichuan Plain of China. Ecotoxicol Environ Safe 169:737–746. https://doi.org/10.1016/j.ecoenv.2018.11.096

    Article  CAS  Google Scholar 

  • Wu L, Pan X, Chen L, Huang Y, Teng Y, Luo Y, Christie P (2013) Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China. Environ Sci Pollut Res Int 20:8342–8354

    Article  CAS  Google Scholar 

  • Xu XR, Li XY (2010) Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 78:430–436

    Article  CAS  Google Scholar 

  • Yang W, Liu W, Hu X (2003) Study on the adsorption of herbicide in soil colloids by Zeta potential measurements. China Environ Sci Technol 23(1):51–54 (In Chinese)

    CAS  Google Scholar 

  • Yang SK, Gao LC, Liu YY, Zhao Y, Li HH, Zhou Y (2015) The influence of humic acid colloid on adsorption behaviors of acetaminophen onto sediment. Fresenius Environ Bull 24:4042–4049

    CAS  Google Scholar 

  • Ye N, Wang Z, Wang S, Fang H, Wang D (2018) Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry. Environ Sci Pollut Res 25:10956–10965

    Article  CAS  Google Scholar 

  • Yin M, Xiang Y, Si Y, Chen T (2012) Adsorption of several adsorbents onto atrazine and electrokinetic properties. Soils 44:118–125. https://doi.org/10.3969/j.issn.0253-9829.2012.01.020 (In Chinese)

    Article  CAS  Google Scholar 

  • You G, Hou J, Wang P, Xu Y, Wang C, Miao L, Lv B, Yang Y, Luo H (2016) Effects of CeO2 nanoparticles on sludge aggregation and the role of extracellular polymeric substances - Explanation based on extended DLVO. Environ Res 151:698–705. https://doi.org/10.1016/j.envres.2016.08.023

    Article  CAS  Google Scholar 

  • Yu H-q, Wu Y-b, Song T-b, Li Y, Shen Y (2013) Preparation of metal oxide doped ACNFs and their adsorption performance for low concentration SO2. Int J Miner Metall Mater 20:1102–1106. https://doi.org/10.1007/s12613-013-0840-2

    Article  CAS  Google Scholar 

  • Zhang Q, Ying G, Pan C, Liu Y, Zhao J (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of china: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782

    Article  CAS  Google Scholar 

  • Zhang D, Yang SK, Wang YN, Yang CY, Chen YY, Wang RZ, Wang ZZ, Yuan XY, Wang WK (2019) Adsorption characteristics of oxytetracycline by different fractions of organic matter in sedimentary soil. Environ Sci Pollut Res 1–12. https://doi.org/10.1007/s11356-018-4028-1

  • Zhao Y, Xueyuan GU, Gao S, Geng J, Wang X (2012) Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects. Geoderma 183-184:12–18. https://doi.org/10.1016/j.geoderma.2012.03.004

    Article  CAS  Google Scholar 

  • Zhu G, Yin J (2017) Fluorescence Quenching of humic acid by coated metallic silver particles. J Fluoresc 27:1233–1243. https://doi.org/10.1007/s10895-016-2012-z

    Article  CAS  Google Scholar 

  • Zhu J, ., Snow DD, Cassada DA, Monson SJ, Spalding RF (2001) Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography-tandem mass spectrometry J Chromatogr A 928:177-186

    Article  CAS  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372-2380. https://doi.org/10.1016/j.soilbio.2006.01.031

Download references

Funding

The work was financially supported by National Natural Science Foundation of China (41672224 and 41977163); National Key Research and Development Program of China (2016YFC0400701); and the Provincial Natural Science Foundation of Shaanxi Province, China (2019JM-428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengke Yang.

Additional information

Responsible editor: Thomas D. Bucheli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Yang, S., Jiang, Q. et al. Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory. Environ Sci Pollut Res 27, 1697–1709 (2020). https://doi.org/10.1007/s11356-019-06787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06787-3

Keywords

Navigation