Skip to main content
Log in

Numerical simulation of the simultaneous removal of particulate matter in a wet flue gas desulfurization system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The particulate matter (PM) could be simultaneously removed during the wet flue gas desulfurization (WFGD) process. To analyze the underlying mechanism and removal efficiency, the PM removal process in a desulfurization system was numerically simulated based on the population balance model and general dynamics equation in this study. The equation was solved using the fixed-step Monte Carlo method to determine the PM removal characteristics under different working conditions (such as spray intensity, velocity of the flue gas, and layers of slurry spray). When the flue gas velocity decreased from 7 to 3 m/s, the removal efficiency increased from 90.93 to 93.52%, and when the mean geometric droplet size decreased from 3 to 1 mm, the removal efficiency increased from 67.18 to 99.14%. Besides, large diameter PM was more easily removed by the desulfurization system. Thus, the numerical simulation method was proven to be feasible by comparing these results with field measurements of a WFGD system in a coal-fired power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bae SY, Chang HJ, Yong PK (2009) Relative contributions of individual phoretic effect in the below-cloud scavenging process. J Aerosol Sci 40(7):621–632

    Article  CAS  Google Scholar 

  • Bae SY, Chang HJ, Yong PK (2010) Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment method. J Aerosol Sci 41(3):266–280

    Article  CAS  Google Scholar 

  • Ballester F, Granero D, Pérezcalatayud J, Casal E, Puchades V (2004) Monte Carlo dosimetric study of best industries and Alpha Omega Ir-192 brachytherapy seeds. Med Phys 31(12):3298–3305

    Article  CAS  Google Scholar 

  • Bao J, Yang L, Song S, Xiong G (2012) Separation of fine particles from gases in wet flue gas desulfurization system using a cascade of double towers. Energy Fuels 26(4):2090–2097

    Article  CAS  Google Scholar 

  • Bao J, Yang L, Song S, Xiong G (2012) Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers. Energy & Fuels 26(4):2090–2097

  • Cao R, Tan H, Xiong Y, Mikulčić H, Vujanović M, Wang X, Duić N (2017) Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator. Journal of Cleaner Production 161: 1459-1465

  • Chang HJ, Yong PK, Lee KW (2003) A moment model for simulating raindrop scavenging of aerosols. J Aerosol Sci 34(9):1217–1233

    Article  Google Scholar 

  • Fan FX, Yuan ZL, Zhao B, Yao G (2008) Numerical Simulation on Fine Particle Coagulation in Standing Wave Sound Field. Journal of Combustion Science and Technology 14(3):253-258

  • Fan F, Yang L, Yan J, Bao J, Shen X (2009) Experimental investigation on removal of coal-fired fine particles by a condensation scrubber. Chem Eng Process Process Intensif 48(8):1353–1360

    Article  CAS  Google Scholar 

  • Feng J (2010) Analysis of dedusting influencing factors and effect of sprayer in desulphurization system. Environ Eng 28(3):70–72

    CAS  Google Scholar 

  • Garshasbi S, Kurnitski J, Mohammadi Y (2016) A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings. Appl Energy 179:626–637

    Article  Google Scholar 

  • Gong HF, Chen ZS, Zhu QX, He YL (2017) A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries. Applied Energy 197: 405-415

  • Hansen BB, Kiil S, Johnsson JE (2010) Quantification of gypsum crystal nucleation, growth, and breakage rates in a wet flue gas desulfurization pilot plant. AIChE journal 55(10):2746-2753

  • Kaldor TG, Phillips CR (1976) Aerosol scrubbing by foam. Ind Eng Chem Process Des Dev 15(1):199–206

    Article  CAS  Google Scholar 

  • Kiil S, Michelsen ML, Dam-Johansen K (1998) Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Ind Eng Chem Res 37(7):2792–2806

    Article  CAS  Google Scholar 

  • Kiil S, Nygaard H, Johnsson JE (2002) Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant. Chem Eng Sci 57(3):347–354

    Article  CAS  Google Scholar 

  • Kilburn R, Gregory A, Murray AG (2012) Using a Markov-Chain Monte-Carlo modelling approach to identify the relative risk to farmed Scottish Rainbow trout ( Oncorhynchus mykiss ) in a multi-sector industry of Viral Haemorrhagic Septicaemia Viruses from introduction and emergent sources. Ecol Model s 237–238(1739):34–42

    Article  Google Scholar 

  • Kim H, Jung C, Oh S, Lee K (2001) Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction. Environ Eng Sci 18(2):125–136

    Article  CAS  Google Scholar 

  • Kim HG, Kim HJ, Lee MH, Kim JH (2014) Experimental Study on the Enhancement of Particle Removal Efficiency in Spray Tower Scrubber Using Electrospray. Asian Journal of Atmospheric Environment (AJAE) 8(2)

  • Li L, Tan Z, Wang J, Xu J, Cai C, Hou Y (2011) Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 39(6):3669–3679

    Article  Google Scholar 

  • Li R, Xiao-Qing D, Zheng-Yang H, Shi-Jie LI, Zhun HJEE (2018) Air flow distribution and optimization for desulfurization tower-wet electrostatic precipitator integrated equipment

  • Li C, Ji B, Song Q, Yao Q (2019) Numerical Simulation of Synergetic Removal of Particulate Matter by Spraying During Wet Flue Gas Desulfurization. Proceedings of the Chinese Society of Electrical Engineering 39(4):1070-1078

  • Liu J, Wang X, Gao J, Zhang Y, Lu Q, Liu M (2016) Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors. Electrochim Acta 211:183–192

    Article  CAS  Google Scholar 

  • Liu J, Chen D, Lu J (2017) Experiment on fine particle purification by flue gas condensation for industrial boilers. Fuel 199:684–696

    Article  CAS  Google Scholar 

  • NOR (2004) Emission standard of air pollutants for thermal power plants. Energy of China

  • Park S, Jung C, Jung K, Lee B, Lee K (2005) Wet scrubbing of polydisperse aerosols by freely falling droplets. J Aerosol Sci 36(12):1444–1458

    Article  CAS  Google Scholar 

  • Šolc J, Dryák P, Moser H, Branger T, García-Toraño E, Peyrés V, Tzika F, Lutter G, Capogni M, Fazio A (2015) Characterisation of a radionuclide specific laboratory detector system for the metallurgical industry by Monte Carlo simulations. Radiation Physics and Chemistry 116:189-193

  • Vithayasrichareon P, Macgill IF (2012) A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries. Energy Policy 41(4):374-392

  • Wang ZS, Pan LB (2014) Implementation Results of Emission Standards of Air Pollutants for Thermal Power Plants: a Numerical Simulation. Huan jing ke xue= Huanjing kexue 35(3):853-863

  • Wang A, Song Q, Yao Q (2014) Numerical simulation of single droplet capturing particles in the WFGD. J Eng Thermophys 35(9)

  • Wang DG, Zhu FH, Yu-Ping YI, Liu Z, Xiao-Ming LI, Meng LY (2015) Removal efficiency of WFGD system to particles based on field tests. Administration & Technique of Environmental Monitoring

  • Wang A, Song Q, Ji B, Yao Q (2016) Effect of droplet deformation on inertial and thermophoretic capture of particles. Atmos Environ 127:187–195

    Article  CAS  Google Scholar 

  • Wang S, Shuiqing LI, Duan L, Shi W, Xue J, Liu JJPotC (2017) Study on the coagulation of vapor condensates and fine particulates in a phase-change agglomerator

  • Williams DG (2007) U.S. nuclear plant decommissioning funding adequacy — by individual funds, utilities, reactors, and industry-wide — assessed by Monte Carlo and baseline trend methods: 1998, 2000, 2001, and 2004 ☆. Energy Econ 29(5):1050–1100

    Article  Google Scholar 

  • Willigers BJA, Hansen TL (2008) Project valuation in the pharmaceutical industry: a comparison of least‐squares Monte Carlo real option valuation and conventional approaches. R&d Management 38(5):520–537

  • Wu H, Pan D, Huang R, Hong G, Yang B, Peng Z, Yang L (2016a) Abatement of Fine Particle Emission by Heterogeneous Vapor Condensation During Wet Limestone-Gypsum Flue Gas Desulfurization. Energy & Fuels 30(7): 6103-6109

  • Wu H, Pan D, Xiong G, Jiang Y, Yang L, Yang B, Peng Z, Hong G (2016b) The abatement of fine particles from desulfurized flue gas by heterogeneous vapor condensation coupling two impinging streams. Chem Eng Process Process Intensif 108:174–180

    Article  CAS  Google Scholar 

  • Wu H, Yang LJ, Yan JP, Hong GX, Yang B (2016c) Improving the removal of fine particles by heterogeneous condensation during WFGD processes. Fuel Process Technol 145:116–122

    Article  CAS  Google Scholar 

  • Xu J, Yu Y, Zhang J, Meng Q, Zhong H (2017) Heterogeneous condensation of water vapor on particles at high concentration. Powder Technol 305:71–77

    Article  CAS  Google Scholar 

  • Yan J, Chen L, Lin Q (2017) Removal of fine particles in WFGD system using the simultaneous acoustic agglomeration and supersaturated vapor condensation. Powder Technol 315:106–113

    Article  CAS  Google Scholar 

  • Yang L, Bao J, Yan J, Liu J, Song S, Fan F (2010) Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation. Chemical engineering journal 156(1):25-32

  • Yang YH, Lin SJ, Lewis C (2009b) Reduction of acidification from electricity — generating industries in Taiwan by life cycle assessment and Monte Carlo optimization. Ecol Econ 68(6):1575–1582

    Article  Google Scholar 

  • Yang Z, Ji P, Li Q, Jiang Y, Zheng C, Wang Y, Gao X, Lin R (2019) Comprehensive understanding of SO3 effects on synergies among air pollution control devices in ultra-low emission power plants burning high-sulfur coal. J Clean Prod 239:118096

    Article  Google Scholar 

  • Yao M, Nie J, Zhang L, Hongzhi LI (2016) Integrative flue-gas pollutants removal technology for coal-fired utility boilers. Thermal Power Generation

  • You C, Li Y (2013) Population balance for CFB–FGD systems. Powder technology 235:859-865

  • Yuan Y, Liqiang QI (2007) Mathematical model for studying dust-removal efficiency in sprayer of limestone/gypsum wet flue gas desulfurization system in power plants. Science & Technology Review

  • Zhao H, Zheng C (2006a) Monte Carlo simulation for simultaneous particle coagulation and deposition. Science in China Series E 49(2):222-237

  • Zhao H, Zheng C (2006b) Monte Carlo solution of wet removal of aerosols by precipitation. Atmos Environ 40(8):1510–1525

    Article  CAS  Google Scholar 

  • Zhao H, Zheng C, Xu M (2005a) Multi-Monte Carlo approach for general dynamic equation considering simultaneous particle coagulation and breakage. Powder Technol 154(2-3):164–178

    Article  CAS  Google Scholar 

  • Zhao H, Zheng C, Xu M (2005b) Multi-Monte Carlo method for coagulation and condensation/evaporation in dispersed systems. J Colloid Interface Sci 286(1):195–208

    Article  CAS  Google Scholar 

  • Zhao H, Zheng C, Xu M (2005c) Multi-Monte Carlo method for particle coagulation: description and validation. Appl Math Comput 167(2):1383–1399

    Google Scholar 

  • Zhao H, Maisels A, Matsoukas T, Zheng C (2007) Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems. Powder Technol 173(1):38–50

    Article  CAS  Google Scholar 

  • Zhao Y, Wang S, Nielsen CP, Li X, Hao J (2010) Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmos Environ 44(12):1515–1523

    Article  CAS  Google Scholar 

  • Zhong Y, Gao X, Huo W, Luo ZY, Ni MJ, KFJFPT C (2008) A model for performance optimization of wet flue gas desulfurization systems of power plants. 89(11):1025–1032

  • Zhu F (2017) Methodologies on choosing appropriate technical route for ultra low emission of flue gas pollutants from coal-fired power plants. Electric Power

Download references

Funding

This study is funded by the National key research and development program of China 2017YFB0603205 and National Natural Science Foundation of China U1609212, 51621005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghang Zheng.

Additional information

Responsible editor: Bingcai Pan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 37 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zheng, C., Li, Q. et al. Numerical simulation of the simultaneous removal of particulate matter in a wet flue gas desulfurization system. Environ Sci Pollut Res 27, 1598–1607 (2020). https://doi.org/10.1007/s11356-019-06773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06773-9

Keywords

Navigation