Skip to main content
Log in

Removal of heavy metals in aquatic environment by graphene oxide composites: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As the most important graphene derivate, graphene oxide (GO) is a high-efficient adsorbent for the removal of heavy metals in aquatic environment due to its abundant oxygen functional groups, enormous specific area, and strong hydrophilia. However, there are some drawbacks, such as easily aggregating and difficult separation, restricting the environmental application of GO. GO is not a suitable adsorbent by itself. Hence, some materials were used to synthesize GO composites, and GO composites are commonly characterized by high adsorption capacity to overcome the above drawbacks. This review discusses five main GO composites—GO–chitosan, GO–alginate, GO–SiO2, NZVI–rGO, and magnetic GO composites—and summarizes the synthesis methods of GO composites and its application for the removal of heavy metals in aquatic environments. The influencing factors, adsorption capacities, and mechanisms related to the removal of heavy metals by GO composites are highlighted. Lastly, the application potentials and challenges of GO composites for aqueous environmental remediation are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algothmi WM, Bandaru NM, Yu Y, Shapter JG, Ellis AV (2013) Alginate-graphene oxide hybrid gel beads: An efficient copper adsorbent material. Journal of Colloid and Interface Science 397:32-38

    CAS  Google Scholar 

  • Allen SJ, McKay G, Porter JF (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 280:322–333

    CAS  Google Scholar 

  • Apiratikul R, Pavasant P (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99:2766–2777

    CAS  Google Scholar 

  • Bhattacharya A, Naiya T, Mandal S, Das S (2008) Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137:529–541

    CAS  Google Scholar 

  • Bulbula ST, Dong Y, Lu Y, Yang X-Y (2018) Graphene oxide coating enhances adsorption of lead ions on mesoporous sio2 spheres. Chem Lett 47:210–212

    CAS  Google Scholar 

  • Cai L, Wang Q, Luo J, Chen L, Zhu R, Wang S, Tang C (2019) Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci Total Environ 650:725–733

    CAS  Google Scholar 

  • Cai Y, Wu C, Liu Z, Zhang L, Chen L, Wang J, Wang X, Yang S, Wang S (2017) Fabrication of a phosphorylated graphene oxide-chitosan composite for highly effective and selective capture of U(VI). Environmental Science-Nano 4:1876–1886

    CAS  Google Scholar 

  • Cataldo S, Gianguzza A, Merli M, Muratore N, Piazzese D, Liveri MLT (2014) Experimental and robust modeling approach for lead(II) uptake by alginate gel beads: influence of the ionic strength and medium composition. J Colloid Interface Sci 434:77–88

    CAS  Google Scholar 

  • Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem Commun 47:3942–3944

    CAS  Google Scholar 

  • Chen C, Wang X (2007) Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl Radiat Isot 65:155–163

    CAS  Google Scholar 

  • Chen S, Yue Q, Gao B, Xu X (2010) Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. J Colloid Interface Sci 349:256–264

    CAS  Google Scholar 

  • Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001

    CAS  Google Scholar 

  • Chen J, Wang Y, Wei X, Xu P, Xu W, Ni R, Meng J (2018) Magnetic solid-phase extraction for the removal of mercury from water with ternary hydrosulphonyl-based deep eutectic solvent modified magnetic graphene oxide. Talanta 188:454–462

    CAS  Google Scholar 

  • Chong M, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    CAS  Google Scholar 

  • Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2013) Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ Sci Technol 47:6288–6296

    CAS  Google Scholar 

  • Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, Du B (2015a) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10

    CAS  Google Scholar 

  • Cui L, Wang Y, Hu L, Gao L, Du B, Wei Q (2015b) Mechanism of Pb(ii) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Advances 5:9759–9770

    CAS  Google Scholar 

  • Devrim YG, Rzaev ZM, Pişkin E (2006) Synthesis and characterization of poly [((maleic anhydride)-alt-styrene)-co-(2-acrylamido-2-methyl-1-propanesulfonic acid)]. Macromol Chem Phys 207:111–121

    CAS  Google Scholar 

  • Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238:302–311

    CAS  Google Scholar 

  • Djahed B, Taghavi M, Farzadkia M, Norzaee S, Miri M (2018) Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food Chem Toxicol 115:405–412

    CAS  Google Scholar 

  • Dogan H (2012) Preparation and characterization of calcium alginate-based composite adsorbents for the removal of Cd, Hg, and Pb ions from aqueous solution. Toxicol Environ Chem 94:482–499

    CAS  Google Scholar 

  • Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93

    CAS  Google Scholar 

  • Dong J, L-m R, Z-f C, Hu W-h (2017) Analysis of XPS in the removal of Cr(VI) from groundwater with rGO-nZ VI. Spectrosc Spectr Anal 37:250–255

    CAS  Google Scholar 

  • Du X, Qiao SZ (2015) Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. Small 11:392–413

    CAS  Google Scholar 

  • Duru İ, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097–6116

    CAS  Google Scholar 

  • Fakhri Y, Saha N, Miri A, Baghaei M, Roomiani L, Ghaderpoori M, Taghavi M, Keramati H, Bahmani Z, Moradi B, Bay A, Pouya RH (2018) Metal concentrations in fillet and gill of parrotfish (Scarus ghobban) from the Persian Gulf and implications for human health. Food Chem Toxicol 118:348–354

    CAS  Google Scholar 

  • Fan F, Qin Z, Bai J, Rong W, Fan F, Tian W, Wu X, Wang Y, Zhao L (2012a) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    CAS  Google Scholar 

  • Fan L, Luo C, Li X, Lu F, Qiu H, Sun M (2012b) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 215:272–279

    CAS  Google Scholar 

  • Fan M, Li T, Hu J, Cao R, Wu Q, Wei X, Li L, Shi X, Ruan W (2016) Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites Used for Pb(II) Removal. Materials 9(8):687

    Google Scholar 

  • Fang L, Li L, Qu Z, Xu H, Xu J, Yan N (2018) A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J Hazard Mater 342:617–624

    CAS  Google Scholar 

  • Fei Y, Yong L, Sheng H, Jie M (2016) Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J Colloid Interface Sci 484:196–204

    CAS  Google Scholar 

  • Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104

    CAS  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:1100–1107

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    CAS  Google Scholar 

  • Fu W, Huang Z (2018) Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 209:449–456

    CAS  Google Scholar 

  • Gan L, Li H, Chen L, Xu L, Liu J, Geng A, Mei C, Shang S (2018) Graphene oxide incorporated alginate hydrogel beads for the removal of various organic dyes and bisphenol A in water. Colloid Polym Sci 296:607–615

    CAS  Google Scholar 

  • Ganesan P, Kamaraj R, Vasudevan S (2013) Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J Taiwan Inst Chem Eng 44:808–814

    CAS  Google Scholar 

  • Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826

    CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    CAS  Google Scholar 

  • Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287

    CAS  Google Scholar 

  • Ghaneian MT, Jamshidi B, Amrollahi M, Dehvari M, Taghavi M (2014) Application of biosorption process by pomegranate seed powder in the removal of hexavalent chromium from aqueous environment. Koomesh 15:206–211

    Google Scholar 

  • Ghaneian M, Bhatnagar A, Ehrampoush M, Amrollahi M, Jamshidi B, Dehvari M, Taghavi M (2017) Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. Int J Environ Sci Technol 14:331–340

    CAS  Google Scholar 

  • Ghasemi SM, Mohseni-Bandpei A, Ghaderpoori M, Fakhri Y, Keramati H, Taghavi M, Moradi B, Karimyan K (2017) Application of modified maize hull for removal of Cu (II) ions from aqueous solutions. Environ Prot Eng 43:93–103

  • Ghorbani M, Shams A, Seyedin O, Afshar Lahoori N (2018) Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples. Environ Sci Pollut Res Int 25:5655–5667

    CAS  Google Scholar 

  • Goldberg S (2005) Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J Colloid Interface Sci 285:509–517

    CAS  Google Scholar 

  • Grimshaw P, Calo JM, Hradil G (2011) Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions. Chem Eng J 175:103–109

    CAS  Google Scholar 

  • Guo Y, Deng J, Zhu J, Zhou X, Bai R (2016) Removal of mercury(ii) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism. RSC Adv 6:82523–82536

    CAS  Google Scholar 

  • Guo T, Bulin C, Li B, Zhao Z, Yu H, Sun H, Ge X, Xing R, Zhang B (2017) Efficient removal of aqueous Pb(II) using partially reduced graphene oxide-Fe3O4. Adsorpt Sci Technol 36:1031–1048

    Google Scholar 

  • He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56

    CAS  Google Scholar 

  • Hoppe A, Gueldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    CAS  Google Scholar 

  • Hosseinzadeh H, Ramin S (2016) Fast and enhanced removal of mercury from aqueous solutions by magnetic starch-g-poly(acryl amide)/graphene oxide nanocomposite superabsorbents. Polymer Science Series B 58:457–473

    Google Scholar 

  • Hou W, Zhang Y, Liu T, Lu H, He L (2015) Graphene oxide coated quartz sand as a high performance adsorption material in the application of water treatment. RSC Advances 5:8037–8043

    CAS  Google Scholar 

  • Hu X, Yu Y, Hou W, Zhou J, Song L (2013) Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl Surf Sci 273:118–121

    CAS  Google Scholar 

  • Hu X, Liu Y, Zeng G, Wang H, You S, Hu X, Tan X, Chen A, Guo F (2015) Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement. Chemosphere 127:35–41

    CAS  Google Scholar 

  • Hu X, Xu J, Wu C, Deng J, Liao W, Ling Y, Yang Y, Zhao Y, Zhao Y, Hu X, Wang H, Liu Y (2017a) Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: performance, modelling, and fractional factorial design. PloS One 12(10):e0187166

    Google Scholar 

  • Hu X, Zhao Y, Wang H, Tan X, Yang Y, Liu Y (2017b) Efficient removal of tetracycline from aqueous media with a Fe3O4 nanoparticles@graphene oxide nanosheets assembly. Int J Environ Res Public Health 14(12):1495

    Google Scholar 

  • Huang G, Guo H, Zhao J, Liu Y, Xing B (2016) Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment. Water Res 102:313–320

    CAS  Google Scholar 

  • Huang G, Zhang M, Liu C, Li L, Chen Z (2018a) Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: distributions, sources, and driving forces. Sci Total Environ 635:913–925

    CAS  Google Scholar 

  • Huang Q, Chen Y, Yu H, Yan L, Zhang J, Wang B, Du B, Xing L (2018b) Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: one-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chem Eng J 341:1–9

    CAS  Google Scholar 

  • Huang R, Ma X, Li X, Guo L, Xie X, Zhang M, Li J (2018c) A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution. J Colloid Interface Sci 514:544–553

    CAS  Google Scholar 

  • Huang X, Yang J, Wang J, Bi J, Xie C, Hao H (2018d) Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater. Chemosphere 206:513–521

    CAS  Google Scholar 

  • Huang D, Wu J, Wang L, Liu X, Meng J, Tang X, Tang C, Xu J (2019) Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem Eng J 358:1399–1409

    CAS  Google Scholar 

  • Huong Chi V, Dwivedi AD, Thao Thanh L, Seo S-H, Kim E-J, Chang Y-S (2017) Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control. Chem Eng J 307:220–229

    Google Scholar 

  • Imai A, Fukushima T, Matsushige K, Kim Y-H, Choi K (2002) Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res 36:859–870

    CAS  Google Scholar 

  • Jabeen H, Kemp KC, Chandra V (2013) Synthesis of nano zerovalent iron nanoparticles—graphene composite for the treatment of lead contaminated water. J Environ Manag 130:429–435

    CAS  Google Scholar 

  • Jiang M, Jin X, Lu X, Chen Z (2010) Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252:33–39

    CAS  Google Scholar 

  • Jiang G, Chang Q, Yang F, Hu X, Tang H (2015) Sono-assisted preparation of magnetic ferroferric oxide/graphene oxide nanoparticles and application on dye removal. Chin J Chem Eng 23:510–515

    CAS  Google Scholar 

  • Jiang L, Liu Y, Liu S, Zeng G, Hu X, Hu X, Guo Z, Tan X, Wang L, Wu Z (2017) Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: comparison to carbon nanotube, biochar, and activated carbon. Environ Sci Technol 51:6352–6359

    CAS  Google Scholar 

  • Jiao C, Xiong J, Tao J, Xu S, Zhang D, Lin H, Chen Y (2016) Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int J Biol Macromol 83:133–141

    CAS  Google Scholar 

  • Jusoh A, Shiung LS, Noor M (2007) A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206:9–16

    CAS  Google Scholar 

  • Kamaraj R, Pandiarajan A, Gandhi MR, Shibayama A, Vasudevan S (2017) Eco-friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides. ChemistrySelect 2:342–355

    CAS  Google Scholar 

  • Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717

    CAS  Google Scholar 

  • Kong D, Wang N, Qiao N, Wang Q, Wang Z, Zhou Z, Ren Z (2017a) Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for highly selective removal of copper(II). ACS Sustain Chem Eng 5:7401–7409

    CAS  Google Scholar 

  • Kong L, Li Z, Huang X, Huang S, Sun H, Liu M, Li L (2017b) Efficient removal of Pb(ii) from water using magnetic Fe3S4/reduced graphene oxide composites. J Mater Chem A 5:19333–19342

    CAS  Google Scholar 

  • Kou L, Gao C (2011) Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 3:519–528

    CAS  Google Scholar 

  • Kumar ASK, Jiang S-J (2017) Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with beta-cyclodextrin functionalized graphene oxide an excellent adsorption of As(V)/(III). J Mol Liq 237:387–401

    CAS  Google Scholar 

  • Kyzas GZ, Travlou NA, Deliyanni EA (2014) The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surf B Biointerfaces 113:467–476

    CAS  Google Scholar 

  • Kyzas GZ, Deliyanni EA, Bikiaris DN, Mitropoulos AC (2018) Graphene composites as dye adsorbents: review. Chem Eng Res Des 129:75–88

    CAS  Google Scholar 

  • Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  • Lakshmi J, Vasudevan S (2013) Graphene—a promising material for removal of perchlorate (ClO 4−) from water. Environ Sci Pollut Res 20:5114–5124

    CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295

    CAS  Google Scholar 

  • Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp T, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853

    Google Scholar 

  • Li D, Zhang B, Xuan F (2015a) The sequestration of Sr(II) and Cs(I) from aqueous solutions by magnetic graphene oxides. J Mol Liq 209:508–514

    CAS  Google Scholar 

  • Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4:4991–5000

    CAS  Google Scholar 

  • Li J, Chen C, Zhang R, Wang X (2015b) Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions. Chem Asian J 10:1410–1417

    CAS  Google Scholar 

  • Li J, Chen C, Zhu K, Wang X (2016) Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. J Taiwan Inst Chem Eng 59:389–394

    CAS  Google Scholar 

  • Li X, Wang Z, Li Q, Ma J, Zhu M (2015c) Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption. Chem Eng J 273:630–637

    CAS  Google Scholar 

  • Li X, Zhou H, Wu W, Wei S, Xu Y, Kuang Y (2015d) Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397

    CAS  Google Scholar 

  • Li L, Liu F, Duan H, Wang X, Li J, Wang Y, Luo C (2016a) The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids Surf B Biointerfaces 141:253–259

    CAS  Google Scholar 

  • Li X, Wang S, Liu Y, Jiang L, Song B, Li M, Zeng G, Tan X, Cai X, Ding Y (2016b) Adsorption of Cu(II), Pb(II), and Cd(II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. J Chem Eng Data 62:407–416

    Google Scholar 

  • Li M, Feng J, Huang K, Tang S, Liu R, Li H, Ma F, Meng X (2019) Amino group functionalized SiO2@graphene oxide for efficient removal of Cu(II) from aqueous solutions. Chem Eng Res Des 145:235–244

    CAS  Google Scholar 

  • Liao F, Wang G, Shi Z, Huang X, Xu F, Xu Q, Guo L (2018) Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the Poyang Lake, East China. Expo Health 10:211–227

    CAS  Google Scholar 

  • Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J Phys Chem C 115:25234–25240

    CAS  Google Scholar 

  • Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357

    CAS  Google Scholar 

  • Liu M, Wen T, Wu X, Chen C, Hu J, Li J, Wang X (2013) Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Trans 42:14710–14717

    CAS  Google Scholar 

  • Liu M, Wen T, Wu X, Chen C, Hu J, Li J, Wang X (2013a) Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Trans 42:14710–14717

    CAS  Google Scholar 

  • Liu Y, Hu X, Wang H, Chen A, Liu S, Guo Y, He Y, Hu X, Li J, Liu S, Wang Y, Zhou L (2013b) Photoreduction of Cr(VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe(III) ions. Chem Eng J 226:131–138

    CAS  Google Scholar 

  • Liu Y, Luo C, Cui G, Yan S (2015a) Synthesis of manganese dioxide/iron oxide/graphene oxide magnetic nanocomposites for hexavalent chromium removal. RSC Advances 5:54156–54164

    CAS  Google Scholar 

  • Liu Y, Meng X, Liu Z, Meng M, Jiang F, Luo M, Ni L, Qiu J, Liu F, Zhong G (2015b) Preparation of a two-dimensional ion-imprinted polymer based on a graphene oxide/SiO2 composite for the selective adsorption of nickel ions. Langmuir 31:8841–8851

    CAS  Google Scholar 

  • Liu F, Wu Z, Wang D, Yu J, Jiang X, Chen X (2016a) Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surfaces a-Physicochem Eng Aspects 490:207–214

    CAS  Google Scholar 

  • Liu S, Li S, Zhang H, Wu L, Sun L, Ma J (2016b) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J Radioanal Nucl Chem 309:607–614

    CAS  Google Scholar 

  • Lu M, Y-g L, Hu X-j, Ben Y, X-x Z, T-t L, Wang H (2013) Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae. J Cent South Univ 20:2478–2488

    CAS  Google Scholar 

  • Lv X, Xue X, Jiang G, Wu D, Sheng T, Zhou H, Xu X (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59

    CAS  Google Scholar 

  • Ma Y, Kou Y, Xing D, Jin P, Shao W, Li X, Du X, La P (2017) Synthesis of magnetic graphene oxide grafted polymaleicamide dendrimer nanohybrids for adsorption of Pb(II) in aqueous solution. J Hazard Mater 340:407–416

    CAS  Google Scholar 

  • Ma Y, Shao W, Sun W, Kou Y, Li X, Yang H (2018) One-step fabrication of beta-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions. Appl Surf Sci 459:544–553

    CAS  Google Scholar 

  • Machida M, Mochimaru T, Tatsumoto H (2006) Lead (II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44:2681–2688

    CAS  Google Scholar 

  • Maity J, Ray SK (2018) Chitosan based nano composite adsorbent—synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water. Carbohydr Polym 182:159–171

    CAS  Google Scholar 

  • Miri M, Akbari E, Amrane A, Jafari SJ, Eslami H, Hoseinzadeh E, Zarrabi M, Salimi J, Sayyad-Arbabi M, Taghavi M (2017) Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environ Monit Assess 189:583

    Google Scholar 

  • Mohammadi AA, Zarei A, Esmaeilzadeh M, Taghavi M, Yousefi M, Yousefi Z, Sedighi F, Javan S (2019) Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01816-1

  • Molaei K, Bagheri H, Asgharinezhad AA, Ebrahimzadeh H, Shamsipur M (2017) SiO2-coated magnetic graphene oxide modified with polypyrrole-polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals. Talanta 167:607–616

    CAS  Google Scholar 

  • Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2013) Improved removal of lead(II) from water using a polymer-based graphene oxide nanocomposite. J Mater Chem A 1:3789–3796

    CAS  Google Scholar 

  • Najafabadi HH, Irani M, Rad LR, Haratameh AH, Haririan I (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Advances 5:16532–16539

    Google Scholar 

  • Nityanandi D, Subbhuraam CV (2009) Kinetics and thermodynamic of adsorption of chromium(VI) from aqueous solution using puresorbe. J Hazard Mater 170:876–882

    CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  • Pan X, Sun Q, Cai H, Gao Y, Tan W, Zhang W (2016) Encapsulated feeder cells within alginate beads for ex vivo expansion of cord blood-derived CD34+ cells. Biomater Sci 4:1441–1453

    CAS  Google Scholar 

  • Pan L, Wang Z, Yang Q, Huang R (2018) Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8(11):957

    Google Scholar 

  • Papageorgiou S, Kouvelos E, Katsaros F (2008) Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 224:293–306

    CAS  Google Scholar 

  • Paul B, Parashar V, Mishra A (2015) Graphene in the Fe3O4 nano-composite switching the negative influence of humic acid coating into an enhancing effect in the removal of arsenic from water. Environ Sci Water Res Technol 1:77–83

    CAS  Google Scholar 

  • Peer FE, Bahramifar N, Younesi H (2018) Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets. J Taiwan Inst Chem Eng 87:225–240

    Google Scholar 

  • Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504

    CAS  Google Scholar 

  • Pham Thi Lan H, Nguyen T, Lan H, Le Hong T, Nguyen Van Q, Pham Anh T, Ngo Xuan D, Vu Ngoc P, Anh-Tuan L (2018) Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(V) ions from aqueous solution. RSC Adv 8:12376–12389

  • Phang Y, Chee S, Lee C, Teh Y (2011) Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym Degrad Stab 96:1653–1661

    CAS  Google Scholar 

  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    CAS  Google Scholar 

  • Ramos V, Rodrıguez N, Dıaz M, Rodrıguez M, Heras A, Agullo E (2003) N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr Polym 52:39–46

    CAS  Google Scholar 

  • Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb (II) removal using sodium alginate–carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409

    CAS  Google Scholar 

  • Ren L, Dong J, Chi Z, Huang H (2018) Reduced graphene oxide-nano zero value iron (rGO-nZVI) microelectrolysis accelerating Cr(VI) removal in aquifer. Journal of Environmental Sciences-China 73:96–106

    Google Scholar 

  • Ricci Nicomel N, Leus K, Folens K, Van der Voort P, Du Laing G (2016) Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Public Health 13(1):62

    Google Scholar 

  • Rocher V, Siaugue J-M, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42:1290–1298

    CAS  Google Scholar 

  • Rofouei MK, Jamshidi S, Seidi S, Saleh A (2017) A bucky gel consisting of Fe3O4 nanoparticles, graphene oxide and ionic liquid as an efficient sorbent for extraction of heavy metal ions from water prior to their determination by ICP-OES. Microchim Acta 184:3425–3432

    CAS  Google Scholar 

  • Sahraei R, Hemmati K, Ghaemy M (2016) Adsorptive removal of toxic metals and cationic dyes by magnetic adsorbent based on functionalized graphene oxide from water. RSC Advances 6:72487–72499

    CAS  Google Scholar 

  • Sanchooli Moghaddam M, Rahdar S, Taghavi M (2016) Cadmium removal from aqueous solutions using saxaul tree ash. Iran J Chem Chem Eng 35:45–52

    Google Scholar 

  • Shahzad A, Miran W, Rasool K, Nawaz M, Jang J, Lim S-R, Lee DS (2017) Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Advances 7:9764–9771

    CAS  Google Scholar 

  • Shao J, Yu X, Zhou M, Cai X, Yu C (2018) Nanoscale zero-valent iron decorated on bentonite/graphene oxide for removal of copper ions from aqueous solution. Materials 11(6):945

    Google Scholar 

  • Sharif A, Khorasani M, Shemirani F (2018) Nanocomposite bead (NCB) based on bio-polymer alginate caged magnetic graphene oxide synthesized for adsorption and preconcentration of lead(II) and copper(II) ions from urine, saliva and water samples. J Inorg Organomet Polym Mater 28:2375–2387

    CAS  Google Scholar 

  • Sharma P, Singh AK, Shahi VK (2019) Selective Adsorption of Pb(II) from Aqueous Medium by Cross-Linked Chitosan-Functionalized Graphene Oxide Adsorbent. ACS Sustain Chem Eng 7:1427–1436

    Google Scholar 

  • Singh VK, Cura ME, Liu X, Johansson L-S, Ge Y, Hannula S-P (2014) Tuning the Mechanical and Adsorption Properties of Silica with Graphene Oxide. Chempluschem 79:1512–1152

    CAS  Google Scholar 

  • Srivastava S, Tyagi R, Pant N (1989) Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res 23:1161–1165

    CAS  Google Scholar 

  • Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    CAS  Google Scholar 

  • Sui N, Wang L, Wu X, Li X, Sui J, Xiao H, Liu M, Wan J, Yu WW (2015) Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Advances 5:746–752

    CAS  Google Scholar 

  • Sun D, Zhang X, Wu Y, Liu X (2010) Adsorption of anionic dyes from aqueous solution on fly ash. J Hazard Mater 181:335–342

    CAS  Google Scholar 

  • Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    CAS  Google Scholar 

  • Sun J, Liang Q, Han Q, Zhang X, Ding M (2015) One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta 132:557–563

    CAS  Google Scholar 

  • Taghavi M, Zazouli MA, Yousefi Z, Akbari-adergani B (2015) Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent. Environ Monit Assess 187:682

    Google Scholar 

  • Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013) Graphite oxide/chitosan composite for reactive dye removal. Chem Eng J 217:256–265

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2011) Studies relating to an electrochemically assisted coagulation for the removal of chromium from water using zinc anode. Water Sci Technol Water Supply 11:142–150

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2012a) The adsorption of phosphate by graphene from aqueous solution. RSC Advances 2:5234

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2012b) Process conditions and kinetics for the removal of copper from water by electrocoagulation. Environ Eng Sci 29:563–572

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Packiyam M (2010) Electrocoagulation studies on removal of cadmium using magnesium electrode. J Appl Electrochem 40:2023–2032

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2012) Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicol Environ Chem 94:1930–1940

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Kamaraj R, Sozhan G (2013) A critical study on the removal of copper by an electrochemically assisted coagulation: equilibrium, kinetics, and thermodynamics. Asia Pac J Chem Eng 8:162–171

    CAS  Google Scholar 

  • Wan Y, Chen X, Xiong G, Guo R, Luo H (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Express 4:429–434

    CAS  Google Scholar 

  • Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresourc Technol 160:129–141

    CAS  Google Scholar 

  • Wang X, Huang J, Hu H, Wang J, Qin Y (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J Hazard Mater 142:468–476

    CAS  Google Scholar 

  • Wang Z, Fang D-M, Li Q, Zhang L-X, Qian R, Zhu Y, Qu H-Y, Du Y-P (2012) Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry. Anal Chim Acta 725:81–86

    CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013a) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440

    CAS  Google Scholar 

  • Wang Y, Liang S, Chen B, Guo F, Yu S, Tang Y (2013b) Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites. PloS One 8(6):e65634

    CAS  Google Scholar 

  • Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014a) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131

    CAS  Google Scholar 

  • Wang H, Y-g L, G-m Z, Hu X-j HX, T-t L, H-y L, Wang Y-q, L-h J (2014b) Grafting of beta-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohydr Polym 113:166–173

    CAS  Google Scholar 

  • Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–327

    CAS  Google Scholar 

  • Wang F, Lu X, X-y L (2016) Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J Hazard Mater 308:75–83

    CAS  Google Scholar 

  • Wang L, Hu D, Kong X, Liu J, Li X, Zhou K, Zhao H, Zhou C (2018a) Anionic polypeptide poly(gamma-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd (II), Cu(II) and Ni(II) heavy metal ions. Chem Eng J 346:38–49

    CAS  Google Scholar 

  • Wang S, Li X, Liu Y, Zhang C, Tan X, Zeng G, Song B, Jiang L (2018b) Nitrogen-containing amino compounds functionalized graphene oxide: synthesis, characterization and application for the removal of pollutants from wastewater: a review. J Hazard Mater 342:177–191

    CAS  Google Scholar 

  • Wang J, Zhang W, Wei J (2019) Fabrication of poly(beta-cyclodextrin)-conjugated magnetic graphene oxide by surface-initiated RAFT polymerization for synergetic adsorption of heavy metal ions and organic pollutants. J Mater Chem A 7:2055–2065

    CAS  Google Scholar 

  • Wu J, Luan M, Zhao J (2006) Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Int J Biol Macromol 39:185–191

    CAS  Google Scholar 

  • Wu Z, Li W, Webley PA, Zhao D (2012) General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv Mater 24:485

    CAS  Google Scholar 

  • Wu D, Hu L, Wang Y, Wei Q, Yan L, Yan T, Li Y, Du B (2018) EDTA modified beta-cyclodextrin/chitosan for rapid removal of Pb(II) and acid red from aqueous solution. J Colloid Interface Sci 523:56–64

    CAS  Google Scholar 

  • Xi Y, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron-A SEM, TEM and XPS study. Mater Res Bull 45:1361–1367

    CAS  Google Scholar 

  • Xu L, Wang J (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol 47:1042–1105

    CAS  Google Scholar 

  • Xu C, Wang X, Yang L, Wu Y (2009) Fabrication of a graphene-cuprous oxide composite. J Solid State Chem 182:2486–2490

    CAS  Google Scholar 

  • Xu W, Song Y, Dai K, Sun S, Liu G, Yao J (2018) Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb(II). J Hazard Mater 358:337–345

    CAS  Google Scholar 

  • Yan W, Ramos MA, Koel BE, W-x Z (2012) As (III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy. J Phys Chem C 116:5303–5311

    CAS  Google Scholar 

  • Yan H, Yang H, Li A, Cheng R (2016) pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chem Eng J 284:1397–1405

    CAS  Google Scholar 

  • Yang X, Shi Z, Liu L (2015) Adsorption of Sb(III) from aqueous solution by QFGO particles in batch and fixed-bed systems. Chem Eng J 260:444–453

    CAS  Google Scholar 

  • Yang X, Tu Y, Li L, Shang S, X-m T (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interf 2:1707–1713

    CAS  Google Scholar 

  • Yang X, Chen C, Li J, Zhao G, Ren X, Wang X (2012) Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Advances 2:8821

    CAS  Google Scholar 

  • Yang Y, Wu W-q, H-h Z, Z-y H, T-t Y, Liu R, Kuang Y-f (2014) Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu(II) removal. J Cent South Univ 21:2826–2831

    CAS  Google Scholar 

  • Yang X, Xia L, Song S (2017) Arsenic adsorption from water using graphene-based materials as adsorbents: a critical review. Surf Rev Lett 24(01):1730001

    Google Scholar 

  • Yang X, Zhou T, Ren B, Hursthouse A, Zhang Y (2018) Removal of Mn (II) by Sodium Alginate/Graphene Oxide Composite Double-Network Hydrogel Beads from Aqueous Solutions. Sci Rep 8(1):10717

  • Yi X, Sun F, Han Z, Han F, He J, Ou M, Gu J, Xu X (2018) Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol Environ Saf 158:309–318

    CAS  Google Scholar 

  • Ys H, Mckay G, MCKAY G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Google Scholar 

  • Yu B, Bai Y, Ming Z, Yang H, Chen L, Hu X, Feng S, Yang S-T (2017) Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Mater Chem Phys 198:283–290

    CAS  Google Scholar 

  • Yu Y, Zhang G, Ye L (2019) Preparation and adsorption mechanism of polyvinyl alcohol/graphene oxide-sodium alginate nanocomposite hydrogel with high Pb (II) adsorption capacity. J Appl Polym Sci 136:47318

    Google Scholar 

  • Yuvaraja G, Subbaiah MV, Krishnaiah A (2012) Caesalpinia bonducella leaf powder as biosorbent for Cu(II) removal from aqueous environment: kinetics and isotherms. Ind Eng Chem Res 51:11218–11225

    CAS  Google Scholar 

  • Zazouli MA, Yousefi Z, Taghavi M, Akbari-adergani B, Yazdani Cherati J (2013) Removing cadmium from aqueous environments using L-cysteine functionalized single-walled carbon nanotubes. J Mazandaran Univ Med Sci 23:37–47

    Google Scholar 

  • Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467

    CAS  Google Scholar 

  • Zhang F, Wang B, He S, Man R (2014) Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data 59:1719–1726

    CAS  Google Scholar 

  • Zhang L, Luo H, Liu P, Fang W, Geng J (2016) A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions. Int J Biol Macromol 87:586–596

    CAS  Google Scholar 

  • Zhang H, Chang Q, Jiang Y, Li H, Yang Y (2018) Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology 29(13):135706

    Google Scholar 

  • Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011a) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23:3959

    CAS  Google Scholar 

  • Zhao G, Li J, Ren X, Chen C, Wang X (2011b) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    CAS  Google Scholar 

  • Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI). Appl Surf Sci 384:1–9

    CAS  Google Scholar 

  • Zhou C, Zhu H, Wang Q, Wang J, Cheng J, Guo Y, Zhou X, Bai R (2017) Adsorption of mercury(II) with an Fe3O4 magnetic polypyrrole-graphene oxide nanocomposite. RSC Advances 7:18466–18479

    CAS  Google Scholar 

  • Zhou F, Feng X, Yu J, Jiang X (2018) High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd(II) and Pb(II). Environ Sci Pollut Res 25:15651–15661

    CAS  Google Scholar 

  • Zhu Z, Sun H, Qin X, Jiang L, Pei C, Wang L, Zeng Y, Wen S, La P, Li A, Deng W (2012) Preparation of poly(acrylic acid)-graphite oxide superabsorbent nanocomposites. J Mater Chem 22:4811–4817

    CAS  Google Scholar 

  • Zhu F, Ma S, Liu T, Deng X (2018) Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J Clean Prod 174:184–190

    CAS  Google Scholar 

  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Fundamental Research Funds for Central Public Welfare Research Institutes, CAGS (SK201912, SK201611) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20161056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Fan.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

GO composites are promising adsorbents for heavy metal removal.

The synthesis methods and characterization of three main GO composites are reviewed.

The influencing factors, adsorption mechanisms, and regeneration are highlighted.

The challenges for the remediation of actual wastewater are discussed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Hou, Q., Huang, G. et al. Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environ Sci Pollut Res 27, 190–209 (2020). https://doi.org/10.1007/s11356-019-06683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06683-w

Keywords

Navigation