Skip to main content

Advertisement

Log in

Pollutant gas and particulate material emissions in ethanol production in Brazil: social and environmental impacts

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The replacement of fossil-based fuels by renewable fuels (biofuels) was proposed in the IPCC report, as an alternative to reduce greenhouse gas emission and reach out to a low-carbon economy. On this perspective, the Brazilian government had implemented a renewable energy program based on the use of ethanol in the transport sector. This work evaluates the scenario of pollutant gas emissions and particulate material that comes from the biomass burning process involved in ethanol production cycle, in the city of Campos dos Goytacazes, Brazil. The gases and particulate material emitted by sugarcane and bagasse burning processes—the last one in energy co-generation mills—were analyzed. A laboratory-controlled burning of both samples was realized in an oven with temperature ramp from 250 to 400 °C, at a regular rate of 50 °C. The gas samples were collected directly from the oven’s exhaust pipe. The particulates obtained were the residual material taken out of the burned samples: a powder with the aspect of soot. A photoacoustic spectroscopy system coupled with quantum cascade laser and electrochemical analyzers was used to measure the emission of polluting gases such as N2O, CO2, CO, NOx (NO, NO2), and SO2 in ppmv range. Fluorescent X-ray spectrometry was applied to evaluate the chemical composition of particulate material, enabling the identification of elements such as Si, Al, Ca, K, Fe, S, P, Ti, Mn, Cu, Zn, Sc, V, Cu, and Sr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32

    CAS  Google Scholar 

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    CAS  Google Scholar 

  • Alves F (2006) Por que morrem os cortadores de cana? Saude e Soc 15:90–98

    Google Scholar 

  • de Andrade SJ, Varella SD, Pereira GT, Zocolo GJ, de Marchi MRR, Varanda EA (2011) Mutagenic activity of airborne particulate matter (PM10) in a sugarcane farming area (Araraquara city, southeast Brazil). Environ Res 111:545–550

    Google Scholar 

  • Arbex MA, Böhm GM, Saldiva PHN, Conceição GMS, Pope AC, Braga ALF (2000) Assessment of the effects of sugar cane plantation burning on daily counts of inhalation therapy. J Air Waste Manage Assoc 50:1745–1749

    CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NO(x). Atmos Environ 34:2063–2101

    CAS  Google Scholar 

  • Baird C (2002) Enviromental chemistry. W. H. Freeman and Company.

  • Bambynek W, Crasemann B, Fink RW, Freund HU, Mark H, Swift CD, Price RE, Rao PV (1972) X-ray fluorescence yields, auger, and Coster0Kronig transition probabilities. Rev Mod Phys 44:716–813

    CAS  Google Scholar 

  • Bard AJ et al. (1980) Electrochemical methods: fundamentals and applications. New York: wiley.

  • Bielecki Z, Stacewicz T, Wojtas J, Mikołajczyk J (2015) Application of quantum cascade lasers to trace gas detection. Bull Polish Acad Sci Tech Sci 63:515–525

    CAS  Google Scholar 

  • Bisaro A, Hinkel J (2016) Governance of social dilemmas in climate change adaptation. Nat Clim Chang 6:354–359

    Google Scholar 

  • Le Blond JS, Williamson BJ, Horwell CJ, Monro AK, Kirk CA, Oppenheimer C (2008) Production of potentially hazardous respirable silica airborne particulate from the burning of sugarcane. Atmos Environ 42:5558–5568

    Google Scholar 

  • Bowen JE (1969) Absorption of copper, zinc, and manganese by sugarcane leaf tissue. Plant Physiol 44(2):255–261

    CAS  Google Scholar 

  • Brito J, Carbone S, Monteiro Dos Santos DA, Dominutti P, De Oliveira Alves N, Rizzo L, Artaxo P (2018) Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Sci Rep 8:1–10

    Google Scholar 

  • Brühl C, Crutzen PJ (1999) Reductions in the anthropogenic emissions of CO and their effect on CH4. Chemosphere-Global Change Science 1(1-3):249–254

    Google Scholar 

  • Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, Arbex MA, Zanobetti A, Braga ALF (2006) The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114:725–729

    Google Scholar 

  • De Carvalho Macedo I (1998) Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil. Biomass Bioenergy 14:77–81

    Google Scholar 

  • Castilho S et al (2014) Role of average speed in N2O exhaust emissions as greenhouse gas in a huge urban zone. Energy Fuel 28:4028–4032

    Google Scholar 

  • Chen T-M, Kuschner WG, Gokhale J, Shofer S (2007) Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333:249–256

    Google Scholar 

  • Companhia Nacional de Abastecimento (CONAB), https://www.conab.gov.br/info-agro/safras/cana. Aaccessed in June 13, 2019

  • Couto FM, Sthel MS, Castro MPP, da Silva MG, Rocha MV, Tavares JR, Veiga CFM, Vargas H (2014) Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production. Appl Phys B Lasers Opt 117:897–903

    CAS  Google Scholar 

  • Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–344

    CAS  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    CAS  Google Scholar 

  • Dallmann T, Façanha C (2018) Environmental risks of diesel passenger vehicles in Brazil. Transp, ICCT (International Counc Clean

    Google Scholar 

  • Dallmann TR, Kirchstetter TW, Demartini SJ, Harley RA (2013) Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks. Environ Sci Technol 47:13873–13881

    CAS  Google Scholar 

  • Dulce C, Amargo T, Superexploracion LA, Cañero T, Província LA, Michelle A, Tadeu F (2012) Mundo do Trabalho Cana Doce , Trabalho Amargo : a Superexploração Dotrabalhador Canavieiro No Município De Itaberaí- Go. 13:102–127

  • Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, Berman-Frank I (2015) Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Chang 5:1002–1006

    CAS  Google Scholar 

  • Favory R, Lancel S, Tissier S, Mathieu D, Decoster B, Neviere R (2006) Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. Am J Respir Crit Care Med 174:320–325

    CAS  Google Scholar 

  • Fawcett AA et al (2015) Can Paris pledges avert severe climate change? Reducing risks of severe outcomes and improving chances of limiting warming to 2 °C. Science (80- ) 350:1168–1169

    CAS  Google Scholar 

  • de Figueiredo EB, Panosso AR, Romão R, La Scala Jr N (2010) Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Balance Manag 5:7

    Google Scholar 

  • de França D, A, Longo KM, TGS N, Santos JC, Freitas SR, Rudorff BFT, Cortez EV, Anselmo E, Carvalho JA (2012) Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements. Atmosphere (Basel) 3:164–180

    Google Scholar 

  • Gao L, Zhang M, Han Z (2009) Model analysis of seasonal variations in tropospheric ozone and carbon monoxide over East Asia. Adv Atmos Sci 26:312–318

    CAS  Google Scholar 

  • Gilardoni S, Massoli P, Paglione M, Giulianelli L, Carbone C, Rinaldi M, Decesari S, Sandrini S, Costabile F, Gobbi GP, Pietrogrande MC, Visentin M, Scotto F, Fuzzi S, Facchini MC (2016) Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proc Natl Acad Sci 113:10013–10018

    CAS  Google Scholar 

  • FAO (2007) Organisation for Economic Co-operation and Development Food and Agriculture Organization of United Nations - OCDE FAO.

  • Godoi RHM, Godoi AFL, Worobiec A, Andrade SJ, De Hoog J, Santiago-Silva MR, Van Grieken R (2004) Characterisation of sugar cane combustion particles in the Araraquara region, southeast Brazil. Microchim Acta 145:53–56

    CAS  Google Scholar 

  • Gold DR, Mittleman MA (2013) New insights into pollution and the cardiovascular system: 2010 to 2012. Circulation 127:1903–1913

    Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Von Schuckmann K, David J, Cao J, Marcott S, Masson-delmotte V, Prather MJ, Rohling EJ, Shakun J, Smith P (2016) Young people’s burden : requirement of negative CO2 emissions. Earth Syst Dyn 8:577–616

    Google Scholar 

  • Hao WM, Scharffe D, Lob JM, Crutzen PJ (1991) Emissions of N2O from the burning of biomass in an experimental system. Geophys Res Lett 18(6):999–1002

    CAS  Google Scholar 

  • Hasegawa T, Fujimori S, Takahashi K, Yokohata T, Masui T (2016) Economic implications of climate change impacts on human health through undernourishment. Clim Chang 136:189–202

    Google Scholar 

  • Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA (2009) Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol 39:743–781

    CAS  Google Scholar 

  • Hulme M (2016) after the Paris Agreement. Nat Clim Chang 6:222–224

    Google Scholar 

  • IBGE, Brazilian Institute of Statistics Geography (2017). Disponible: https://www.ibge.gov.br/

  • INDC (2017) Intended Nationally Determined Contribution Towards Achieving the Objective of the United Nations Framework Convention on Climate Change.

  • IPCC (2013) Fifth Assessment Report Climate Change: The Physical Science Basis. Stockholm, Sweden September

    Google Scholar 

  • Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430

    Google Scholar 

  • Janata J, Josowicz M (2002) Conducting polymers in electronic chemical sensors. Nat Mater 2:19–24

    Google Scholar 

  • Jenkins R (1995) Quantitative X-ray spectrometry. CRC Press New YorK

  • Korten I, Ramsey K, Latzin P (2017) Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev 21:38–46

    Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJR et al (2017) The Lancet Commission on pollution and health. Lancet 391:1–51

    Google Scholar 

  • Lara LL, Artaxo P, Martinelli LA, Camargo PB, Victoria RL, Ferraz ESB (2005) Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. Atmos Environ 39:4627–4637

    CAS  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371

    CAS  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    CAS  Google Scholar 

  • Lima JP, Vargas H, Miklós A, Angelmahr M, Hess P (2006) Photoacoustic detection of NO2 and N2O using quantum cascade lasers. Appl Phys B Lasers Opt 85:279–284

    CAS  Google Scholar 

  • Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manage Assoc 51:809–847

    CAS  Google Scholar 

  • Macedo IC, Seabra JEA, Silva EAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil : the 2005 / 2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595

    CAS  Google Scholar 

  • Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci 113:10797–10801

    CAS  Google Scholar 

  • McGonigle AJS, Thomson CL, Tsanev VI, Oppenheimer C (2004) A simple technique power station SO2 and NO2 emissions. Atmos Environ 38:21–25

    CAS  Google Scholar 

  • MME (2018) Ministério de Minas e Energia. Disponible: http://www.mme.gov.br/

    Google Scholar 

  • Nova cana (2015) A cana-de-açúcar como fonte de energia elétrica. Disponible: https://www.novacana.com/

    Google Scholar 

  • Overview of the human health and environmental effects of power generation: focus on sulfur dioxide (SO2), nitrogen oxides (NOx) and mercury (Hg) (2002)

  • Pacific Northwest National Laboratory (2016)

  • Paula RB e (2007) Projeto e Avaliação Teorica e Experimental de Sistemas de Geração de Eletricidade a Partir da Biomassa Utilizando Motores Stirling. Universidade Federal de Itajubá

  • Platt SM, El Haddad I, Pieber SM et al (2014) Two-stroke scooters are a dominant source of air pollution in many cities. Nat Commun 5:3749–3756

    CAS  Google Scholar 

  • Protocolo Agroambiental do Setor Sucraenergético (2017)

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416

    CAS  Google Scholar 

  • Reyes-Reyes A, Hou Z, van Mastrigt E, Horsten RC, de Jongste JC, Pijnenburg MW, Urbach HP, Bhattacharya N (2014) Multicomponent gas analysis using broadband quantum cascade laser spectroscopy. Opt Express 22:18299–18309

    CAS  Google Scholar 

  • Ribeiro H (2008) Sugar cane burning in Brazil: respiratory health effects. Rev Saude Publica 42:370–376

    Google Scholar 

  • Rocha AM, Sthel MS, De Castro MPP, Mothé GA, Silva WC, Perez VH, Da Silva MG, Miklós A, Vargas H (2014) Evaluation of nitrous oxide emitted from diesel/biodiesel blends during combustion in a diesel engine at laboratory scale by a photoacoustic spectroscopy technique. Energy Fuel 28:4028–4032

    CAS  Google Scholar 

  • Romasanta RR, Sander BO, Gaihre YK et al (2017) How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric Ecosyst Environ 239:143–153

    CAS  Google Scholar 

  • Rosa LA, Navarro VL (2014) Trabalho e trabalhadores dos canaviais: perfil dos cortadores de cana da região de Ribeirão Preto (SP). Cad psicol soc trab 17:143–160

    Google Scholar 

  • Saiki M, Santos JO, Alves ER, Genezini FA, Marcelli MP, Saldiva PHN (2014) Correlation study of air pollution and cardio-respiratory diseases through NAA of an atmospheric pollutant biomonitor. J Radioanal Nucl Chem 299:773–779

    CAS  Google Scholar 

  • Salicio MA, Mana VAM, Fett WCR, Gomes LT, Botelho C (2016) Variáveis ambientais e níveis de monóxido de carbono exalado e carboxihemoglobina em idosos praticantes de exercício. Cien Saude Colet 21:1023–1032

    Google Scholar 

  • Samaniego L, Thober S, Kumar R, Wanders N, Rakovec O, Pan M, Zink M, Sheffield J, Wood EF, Marx A (2018) Anthropogenic warming exacerbates European soil moisture droughts. Nat Clim Chang 8:421–426

    Google Scholar 

  • Sánchez-ccoyllo OR, Droprinchinski L, Ynoue RY, Andrade MDF (2007) The impact on tropospheric ozone formation on the implementation of a program for mobile emissions control : a case study in São Paulo , Brazil. Environ Fluid Mech 7:95–119

    Google Scholar 

  • Satyendra T, Singh RN, Shaishav S (2013) Emissions from crop/biomass residue burning risk to atmospheric quality. Int Res J Earth Sci 1:24–30

    Google Scholar 

  • Schuttel M (2013) Bagaço de cana como fonte alternativa de energia.

  • Seddon AWR, Macias-fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–232

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change. Wiley-Interscience Malden, MA, USA

  • Silva, et al. (2015) Elemental composition of PM2. 5 in Araraquara City (Southest Brazil) during seasons with and without sugar cane burning. 6:426–434

  • Silva FS, Cristale J, André PA, Saldiva PHN, Marchi MRR (2010) PM2.5and PM10: The influence of sugarcane burning on potential cancer risk. Atmos Environ 44:5133–5138

    CAS  Google Scholar 

  • Silva RA, West JJ, Lamarque JF et al (2017) Future global mortality from changes in air pollution attributable to climate change. Nat Clim Chang 7:647–651

    Google Scholar 

  • Smith P et al (2016) Biophysical and economic limits to negative CO2emissions. Nat Clim Chang 6:42–50

    CAS  Google Scholar 

  • Stanek LW, Sacks JD, Dutton SJ, Dubois JJB (2011) Attributing health effects to apportioned components and sources of particulate matter: an evaluation of collective results. Atmos Environ 45:5655–5663

    CAS  Google Scholar 

  • Suarez-Bertoa R, Mendoza-Villafuerte P, Bonnel P, Lilova V, Hill L, Perujo A, Astorga C (2016) On-road measurement of NH3and N2O emissions from a Euro V heavy-duty vehicle. Atmos Environ 139:167–175

    CAS  Google Scholar 

  • Swain DL, Langenbrunner B, Neelin JD, Hall A (2018) Increasing precipitation volatility in twenty-first-century California. Nat Clim Chang 8:427–433

    Google Scholar 

  • Tian H et al (2016) The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531:225–228

    CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science (80- ) 314:1598–1600

    CAS  Google Scholar 

  • Tollefson J (2016) Brazil ratification pushes Paris climate deal one step closer.

  • Torquato S, Ramos R (2012) Protocolo agroambiental do setor sucroalcooleiro paulista: ações visando à preservação ambiental. Análises e Indicadores do Agronegócio, São Paulo

    Google Scholar 

  • Townsend CL, Maynard RL (2002) Effects on health of prolonged exposure to low concentrations of carbon monoxide. Occup Environ Med 59:708–711

    CAS  Google Scholar 

  • Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 6:6–11

    Google Scholar 

  • Tsao CC, Campbell JE, Mena-Carrasco M, Spak SN, Carmichael GR, Chen Y (2012) Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol. Nat Clim Chang 2:53–57

    CAS  Google Scholar 

  • Union of the Sugar Cane Industry (UNICA) (2018). Disponible: http://www.unica.com.br/

  • Veras MM, Guimarães-Silva RM, Caldini EG, P.H.N. S, Dolhnikoff MMMT (2012) Effects of particulate ambient air pollution on the murine umbilical cord and its vessels: a quantitative morphological and immunohistochemical study. Reprod Toxicol 34:598–606

    CAS  Google Scholar 

  • Wang H-J (2018) On assessing haze attribution and control measures in China. Atmos Ocean Sci Lett 11:120–122

    Google Scholar 

  • Wolff GT, Korsog PE (1992) Ozone control strategies based on the ratio of volatile organic compounds to nitrogen oxides. J Air Waste Manage Assoc 42:1173–1177

    CAS  Google Scholar 

  • Xu J, Jin T, Miao Y, Han B, Gao J, Bai Z, Xu X (2015) Individual and population intake fractions of diesel particulate matter (DPM) in bus stop microenvironments. Environ Pollut 207:161–167

    CAS  Google Scholar 

  • Zaparoli D. Papel do Bagaço e Palha. Revista Pesquisa Papesp, 263, 2018, https://revistapesquisa.fapesp.br/2018/01/16/papel-de-bagaco-e-palha/ Accessed in June 13, 2019

  • Zhang X, Chen X, Zhang X (2018) The impact of exposure to air pollution on cognitive performance. PNAS:1–5

    CAS  Google Scholar 

  • Zhiqing X, Yin D, Yan Z, Yachun L, Mingliang Y, Shengming J (2009) Effects of precipitation variation on severe acid rain in southern China. J Geogr Sci 19:489–501

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian agencies of the Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), National Council for Scientific and Technological Development (CNPq), Coordination of Improvement of Higher Education Personnel (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo S. Sthel.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sthel, M.S., Mothé, G.A., Lima, M.A. et al. Pollutant gas and particulate material emissions in ethanol production in Brazil: social and environmental impacts. Environ Sci Pollut Res 26, 35082–35093 (2019). https://doi.org/10.1007/s11356-019-06613-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06613-w

Keywords

Navigation