Skip to main content

SVR-RSM: a hybrid heuristic method for modeling monthly pan evaporation

Abstract

In the present study, a hybrid intelligent model called SVR_RSM, which was extracted using response surface method (RSM) combined by the support vector regression (SVR) approaches was applied for predicting monthly pan evaporation (Epan). This method is established based on two basic calibrating process using RSM and SVR. In the first process, an input data group with two different input variables are used to calibrate the RSM; hence, the calibrating data by RSM in the first process are applied as input database for calibrating the SVR in the second process. Results obtained using the proposed SVR_RSM was compared with those obtained using the RSM, SVR, and the well-known multilayer perceptron neural network (MLPNN) models. Climatic variables including maximum and minimum temperatures (Tmax, Tmin), wind speed (U2), and relative humidity (H%), and the periodicity represented by the month number (α) were selected for predicting the monthly Epan measured with the standard class A evaporation pan. Data was collected at six climatic stations located at the northern East of Algeria. The performances of the proposed models were compared using the RMSE, MAE, modified index of agreement (d), coefficient of correlation (R), and modified Nash and Sutcliffe efficiency (NSE). Using various input combination, the results show that the hybrid SVR_RSM model performed better than all the proposed models. Overall, better accuracy was observed when the model contained the periodicity (α), and it was demonstrated that the best accuracy was obtained using only Tmax and Tmin, coupled with the periodicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behrooz Keshtegar or Salim Heddam.

Additional information

Responsible Editor: Marcus Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keshtegar, B., Heddam, S., Sebbar, A. et al. SVR-RSM: a hybrid heuristic method for modeling monthly pan evaporation. Environ Sci Pollut Res 26, 35807–35826 (2019). https://doi.org/10.1007/s11356-019-06596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06596-8

Keywords

  • Monthly pan evaporation
  • Hybrid intelligent model
  • Support vector regression
  • Response surface method
  • Accurate predictions