Skip to main content

Advertisement

Log in

Bioremediation approach using charophytes—preliminary laboratory and field studies of mine drainage water from the Mansfeld Region, Germany

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mine drainage water from the Schlenze stream, Mansfeld Region, Central Germany, which have shown an increase in heavy metal concentrations of Cd2+, Cu2+, Pb2+, and Zn2+, was used to investigate the bioremediation potential of charophytes. The removal of heavy metals by Chara subspinosa from the water was tested in single- and multi-metal additions. The uptake capacity of C. subspinosa decreased during the course of the experiment and was higher in single-metal addition than in multi-metal addition of Pb2+, Zn2+, and Cd2+. Accumulation of heavy metals in the carbonate encrustation of charophytes was far lower than those to which they were exposed. Cu, Cd, Pb, and Zn co-precipitated more in the encrustation of C. subspinosa exposed to single-metal approach than to multi-metal approach. The carbonate composition of charophytes was influenced by the water chemistry. Content of Na in the carbonate encrustation correlated with the Na+ concentration of the respective water. The toxic effect of heavy metals on photosynthesis was species-specific. Electron transport rates (ETRmax) were higher in Chara tomentosa than in C. subspinosa. Charophytes withstand the heavy metal concentrations when diluted with river water from the Altarm cut-off lake and can therefore be used for the bioremediation of diluted mine drainage waters by co-precipitating Cd, Cu, and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Altarm

H1:

Asche

H2:

Lake Lützlow

HM:

Heavy metal

ICP-OES:

Inductively coupled plasma optical emission spectrometry

PAM:

Pulse amplitude modulation

ETR:

Electron transport rate

S:

Schlüsselstollen

Sa:

Saale above

Sb:

Saale below discharge into the Saale

SD:

Standard deviation

TP:

Total phosphorus

References

  • Al-Khateeb SA (2006) Effect of calcium/sodium ratio on growth and ion relations of alfalfa (Medicago sativa L.). J Agron 5(2):175–181. https://doi.org/10.3923/ja.2006.175.181

    Article  Google Scholar 

  • Baborowski M, Bozau E (2006) Impact of former mining activities on the uranium distribution in the River Saale (Germany). Appl Geochem 21:1073–1082. https://doi.org/10.1016/j.apgeochem.2006.02.017

    Article  CAS  Google Scholar 

  • Baborowski M, von Tümpling W (2012) Umsetzung Sedimentmanagementkonzept Schwermetalleinträge Schlüsselstollen in die Saale. Abschlussbericht: Laufzeit Juli 2012 -14.12.2012. Helmholtz-Zentrum für Umweltforschung – UFZ, Department Fließgewässerökologie, pp 1–41

  • Bibi MH, Asaeda T, Azim E (2010) Effects of Cd, Cr, and Zn on growth and metal accumulation in an aquatic macrophyte, Nitella graciliformis. Chem Ecol 26:49–56. https://doi.org/10.1080/02757540903468110

    Article  CAS  Google Scholar 

  • Blindow I (2000) Distribution of charophytes along the Swedish coast in relation to salinity and eutrophication. Int Rev Hydrobiol 85:707–717. https://doi.org/10.1002/1522-2632(200011)85:5/6<707::AID-IROH707>3.0.CO;2-W

    Article  Google Scholar 

  • Blindow I, van de Weyer K (2016) Ökologie der Characeen. In: AG Characeen Deutschlands (ed) Armleuchteralgen-Die Characeen Deutschlands. Springer, Berlin, pp 79–95

    Google Scholar 

  • Claus E, Kasimir P, John H-J, Möhlenkamp C, Becker B, Hillebrand G, Heininger P (2015) Untersuchung von Sedimenten in ausgewählten Staustufen, Nebenflüssen und Seitenstrukturen im Unterlauf der Saale. HyWa 59/6:305–317

    Google Scholar 

  • Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • de Mendiburu F (2016) Agricolae: statistical procedures for agricultural research. R package version 1.2-4

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215. https://doi.org/10.1016/0304-3800(88)90057-9

    Article  Google Scholar 

  • FFG ELBE (2015) Weniger strenge Bewirtschaftungsziele für die im deutschen Teil der Flussgebietseinheiten Elbe und Oder durch den Braunkohlenbergbau und den Sanierungsbergbau beeinflussten Grundwasserkörper. Geschäftsstelle der Flussgebietsgemeinschaft Elbe, pp 1-104

  • FFG ELBE Anlage 7 (2015) Anhang A4-5: Umweltqualitätsnormen zur Beurteilung des chemischen Zustands (Anlage 7 der OGewV). Geschäftsstelle der Flussgebietsgemeinschaft Elbe, pp 1–3

  • Gao Y, Yan X (2012) Response of Chara globularis and Hydrodictyon reticulatum to lead pollution: their survival, bioaccumulation, and defense. J Appl Phycol 24:245–251. https://doi.org/10.1007/s10811-011-9673-4

    Article  CAS  Google Scholar 

  • Glover CN, Wood CM (2005) Physiological characterisation of a pH- and calcium-dependent sodium uptake mechanism in the freshwater crustacean, Daphnia magna. J Exp Biol 208:951–959. https://doi.org/10.1242/jeb.01426

    Article  CAS  Google Scholar 

  • Gomes PIA, Asaeda T (2009) Phycoremediation of chromium (VI) by Nitella and impact of calcium encrustation. J Hazard Mater 166:1332–1338. https://doi.org/10.1016/j.jhazmat.2008.12.055

    Article  CAS  Google Scholar 

  • Gomes PIA, Asaeda T (2013) Phytoremediation of heavy metals by calcifying macroalgae (Nitella pseudoflabellata): implications of redox insensitive end products. Chemosphere 92:1328–1334. https://doi.org/10.1016/j.chemosphere.2013.05.043

    Article  CAS  Google Scholar 

  • Hartwig HJ, Knitzschke G, Kuyumcu M, (1999) 800 Jahre Kupferschieferbergbau–Die Kupferschiefererzlagerstätten Mansfeld/Sangerhausen und ihre bergbauliche Nutzung 1200-1990. In Hartmann O (ed) Kali-, Steinsalz und Kupferschiefer in Mitteldeutschland, GGW 205, Berlin, pp 23–35

  • Jeffrey C (1967) The origin and differentiation of the archegoniate land plants: a second contribution. Kew Bull 21:335–349. https://doi.org/10.2307/4108533

    Article  Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177. https://doi.org/10.1016/j.jenvrad.2004.05.002

    Article  CAS  Google Scholar 

  • Krause W (1997) Charales (Charophycae). In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 18. Gustav Fischer, Jena, pp 168–169

    Google Scholar 

  • Kufel L, Strzałek M, Biardzka E (2016) Site- and species-specific contribution of charophytes to calcium and phosphorus cycling in lakes. Hydrobiologia 767:185–195. https://doi.org/10.1007/s10750-015-2498-4

    Article  CAS  Google Scholar 

  • LAF/PLEJADES (2013) 4011GVV: Frachtreduzierung Schlüsselstollen, Bericht zum Arbeitspaket A: Ermittlung der Auswirkungen des Schlüsselstollens auf den partikel-gebundenen Schadstofftransport in der Saale/Elbe, Magdeburg, pp 1–71

  • Laffont-Schwob I, Triboit F, Prudent P, Soulié-Märsche I, Rabier J, Despréaux M, Thiéry A (2015) Trace metal extraction and biomass production by spontaneous vegetation in temporary Mediterranean stormwater highway retention ponds: freshwater macroalgae (Chara spp.) vs. cattails (Typha spp.). Ecol Eng 81:173–181. https://doi.org/10.1016/j.ecoleng.2015.04.052

    Article  Google Scholar 

  • Mages M, von Tümpling W, van der Veen A, Baborowski M (2006) Element determination in natural biofilms of mine drainage water by total reflection X-ray fluorescence spectrometry. Spectrochim Acta - Part B 61:1146–1152. https://doi.org/10.1016/j.sab.2006.05.007

    Article  CAS  Google Scholar 

  • Nowak P, Steinhardt T, von Ammon U, Rohde H, Schoor A, Holzhausen A, Schaible R, Schubert H (2018) Diaspore bank analysis of Baltic coastal waters. Bot Lett 165:159–173. https://doi.org/10.1080/23818107.2017.1400464

    Article  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91. https://doi.org/10.1016/j.biotechadv.2003.08.009

    Article  Google Scholar 

  • Oswald WJ (1988) Large-scale culture systems: engineering aspects. In: Borowitzka M, Borowitzka L (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 357–392

    Google Scholar 

  • Pukacz A, Pełechaty M, Frankowski M (2016) Depth-dependence and monthly variability of charophyte biomass production: consequences for the precipitation of calcium carbonate in a shallow Chara-lake. Environ Sci Pollut Res 23:22433–22442. https://doi.org/10.1007/s11356-016-7420-8

    Article  CAS  Google Scholar 

  • Reevest JP, Sutko JL (1983) Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem 258(5):3178–3182

    Google Scholar 

  • Schneider SC, Nizzetto L (2012) Bioconcentration and intracellular storage of hexachlorobenzene in charophytes and their potential role in monitoring and remediation actions. Environ Sci Technol 46:12427–12434. https://doi.org/10.1021/es302185g

    Article  CAS  Google Scholar 

  • Schoebe S (2017) Praktikumsbericht: Methodenadaption zur chemischen Abtrennung von Kalziumkarbonat kalzifizierter Characeen als Grundlage für eine sequenzielle Extraktion. Helmholtz-Zentrum für Umweltforschung, Magdeburg, pp 1–10

    Google Scholar 

  • Schreck P, Wennrich R, Stärk HJ, Schubert M, Weiß H (2004) Mansfeld–the contribution of a mining-affected catchment area to regional riverine pollution. UFZ-Bericht 18/2004. UFZ Leipzig-Halle GmbH, Leipzig, pp 169–170

    Google Scholar 

  • Siong K, Asaeda T (2009) Calcite encrustation in macro-algae Chara and its implication to the formation of carbonate-bound cadmium. J Hazard Mater 167:1237–1241. https://doi.org/10.1016/j.jhazmat.2009.01.068

    Article  CAS  Google Scholar 

  • Sooksawat N, Meetam M, Kruatrachue M, Pokethitiyook P, Nathalang K (2013) Phytoremediation potential of charophytes: bioaccumulation and toxicity studies of cadmium, lead and zinc. J Environ Sci 25:596–604. https://doi.org/10.1016/S1001-0742(12)60036-9

    Article  CAS  Google Scholar 

  • Sooksawat N, Meetam M, Kruatrachue M, Pokethitiyook P, Inthorn D (2016) Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater. Bioremediat J 20:240–251. https://doi.org/10.1080/10889868.2016.1212810

    Article  CAS  Google Scholar 

  • Sooksawat N, Meetam M, Kruatrachue M, Pokethitiyook P, Inthorn D (2017) Performance of packed bed column using Chara aculeolata biomass for removal of Pb and Cd ions from wastewater. J Environ Sci Health Part A 52(6):539–546. https://doi.org/10.1080/10934529.2017.1282774

    Article  CAS  Google Scholar 

  • UBA (2015) Revision der Umweltqualitätsnormen der Bundes-Oberflächengewässerverordnung nach Ende der Übergangsfrist für Richtlinie 2006/11/EG und Fortschreibung der europäischen Umweltqualitätsziele für prioritäre Stoffe. Texte 47/2015, Dessau, ISSN 1862-4804

Download references

Acknowledgements

The authors want to thank M. Nickel and V. Hoang for their support in the laboratory, and C. Porsche for advice regarding the statistical treatment of the data.

Funding

A. Herbst was supported by the German Federal Environmental Foundation (DBU) and the University of Rostock (Women Professors Programme II), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Herbst.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 Investigated sampling sites with coordinates. Sites are abbreviated as Asche (H1), Lake Lützlow (H2), Altarm (A), Saaleabove (Sa), Saalebelow (Sb), and Schlüsselstollen (S)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, A., Patzelt, L., Schoebe, S. et al. Bioremediation approach using charophytes—preliminary laboratory and field studies of mine drainage water from the Mansfeld Region, Germany. Environ Sci Pollut Res 26, 34983–34992 (2019). https://doi.org/10.1007/s11356-019-06552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06552-6

Keywords

Navigation