Skip to main content
Log in

Promotional removal of gas-phase Hg0 over activated coke modified by CuCl2

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Impregnating CuCl2 on AC (activated coke) support to synthesize xCuCl2/AC showed superior activity with higher 90% Hg0 removal efficiency at 80–140 °C, as well as a lower oxygen demand of 2% O2 for Hg0 removal. The acceleration on Hg0 removal was observed for NO and SO2. The BET, SEM, XRD, XPS, TPD, and FT-IR characterizations revealed that the larger surface area, sufficient active oxygen species and co-existence of Cu+ and Cu2+ may account for the efficient Hg0 removal. In addition, the low demand of gaseous O2 was contributed to higher content of active oxygen and formed active Cl. After adsorbing on Cu sites, Cl sites, and surface functional groups, the Hg0(ads) removal on xCuCl2/AC was proceeded through two ways. Part of Hg0(ads) was oxidized by active O and formed Hg0, and the other part of Hg0 combined with the active Cl, which was formed by the activation of lattice Cl with the aid of active O, and formed HgCl2. Besides, the Hg2+ detected in outlet gas through mercury speciation conversion and desorption peak of HgCl2 and Hg0 further proved it. As displayed in stability test and simulated industrial application test, CuCl2/AC has a promising industrial application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abrishamkar M, Kahkeshi FB (2013) Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media. Microporous Mesoporous Mater 167:51–54

    CAS  Google Scholar 

  • Aissat A, Courcot D, Cousin R, Siffert S (2011) VOCs removal in the presence of NOx on Cs–Cu/ZrO2 catalysts. Catal Today 176:120–125

    CAS  Google Scholar 

  • Biniak S, Szymański G, Siedlewski J, Światkowski (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810

    CAS  Google Scholar 

  • Cao Y, Chen B, Wu J, Cui H, Smith J, Chen C, Chu P, Pan P (2007) Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal. Energy Fuel 21:145–156

    CAS  Google Scholar 

  • Du X, Li C, Zhao L, Zhang J, Gao L, Sheng J, Yi Y, Chen J, Zeng G (2018a) Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke. Appl Catal B Environ 232:37–48

    CAS  Google Scholar 

  • Du J, Qu Z, Dong C, Song L, Qin Y, Huang N (2018b) Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl Surf Sci 433:1025–1035

    CAS  Google Scholar 

  • Fan X, Li C, Zeng G, Zhang X, Tao S, Lu P, Tan Y, Luo D (2012) Hg0 removal from simulated flue gas over CeO2/HZSM-5. Energy Fuel 26:2082–2089

    CAS  Google Scholar 

  • Fuente-Cuesta A, Lopez-Anton MA, Diaz-Somoano M, Martínez-Tarazona MR (2012) Retention of mercury by low-cost sorbents: influence of flue gas composition and fly ash occurrence. Chem Eng J 213:16–21

    CAS  Google Scholar 

  • Ghorishi SB, Singer CF, Jozewicz WS, Sedman CB, Srivastava (2011) Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents. J Air Waste Manage 52:273–278

    Google Scholar 

  • González-Elipe AR, Martínez-Alonso A, Tascón JM (1988) XPS characterization of coal surfaces: study of aerial oxidation of brown coals. Surf Interface Anal 12:565–571

    Google Scholar 

  • Granite EJ, Pennline HW, Hargis HW (2000) Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res 39:1020–1029

    CAS  Google Scholar 

  • Granite EJ, Freeman MC, Hargis RA, O’Dowd WJ, Pennline HW (2007) The thief process for mercury removal from flue gas. J Environ Manag 84:628–634

    CAS  Google Scholar 

  • He S, Zhou J, Zhu Y, Luo Z, Ni M, Cen K (2009) Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy Fuel 23:253–259

    CAS  Google Scholar 

  • He C, Shen B, Chen J, Cai J (2014) Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898

    CAS  Google Scholar 

  • He C, Shen B, Chi G, Li F (2016) Elemental mercury removal by CeO2/TiO2-PILCs under simulated coal-fired flue gas. Chem Eng J 300:1–8

    CAS  Google Scholar 

  • Hsi HC, Tsai CY (2012) Synthesis of TiO2-x visible-light photocatalyst using N2/Ar/He thermal plasma for low-concentration elemental mercury removal. Chem Eng J 191:378–385

  • Huang Y, Tang J, Gai L, Gong Y, Guan H, He R, Lyu H (2017) Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chem Eng J 319:229–239

    CAS  Google Scholar 

  • Jeong SM, Jung SH, Yoo KS, Kim SD (1999) Selective catalytic reduction of NO by NH3 over a bulk sulfated CuO/γ-Al2O3 catalyst. Ind Eng Chem Res 38:2210–2215

    CAS  Google Scholar 

  • Jin R, Wu Z, Wang H, Gu T (2010) Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere 78:1160–1166

    CAS  Google Scholar 

  • Kan J, Deng L, Li B, Huang Q, Zhu S, Shen S, Chen Y (2017) Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation. Appl Catal A Gen 530:21–29

    CAS  Google Scholar 

  • Kim MH, Ham SW, Lee JB (2010) Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process. Appl Catal B Environ 99:272–278

    CAS  Google Scholar 

  • Leofanti G, Padovan M, Garilli M, Carmello D, Marra GL, Zecchina A, Spoto G, Bordiga S, Lamberti C (2000) Alumina-supported copper chloride. J Catal 189:105–116

    CAS  Google Scholar 

  • Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Prestipino C, Villain F, Lamberti C (2002) Alumina-supported copper chloride. J Catal 205:375–381

    CAS  Google Scholar 

  • Li Y, Lee C, Gullett B (2003) Importance of activated carbon’s oxygen surface functional groups on elemenal mercury adsorption. Fuel 82:451–457

    CAS  Google Scholar 

  • Li H, Li Y, Wu C, Zhang J (2011a) Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas. Chem Eng J 169:186–193

    CAS  Google Scholar 

  • Li H, Wu C, Li Y, Zhang J (2011b) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400

    CAS  Google Scholar 

  • Li H, Wu C, Li Y, Zhang Y (2012) Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl Catal B Environ 111-112:381–388

    CAS  Google Scholar 

  • Li X, Liu Z, Kim J, Lee JY (2013a) Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control. Appl Catal B Environ 132-133:401–407

    CAS  Google Scholar 

  • Li X, Liu Z, Lee JY (2013b) Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent. J Hazard Mater 252-253:419–427

    CAS  Google Scholar 

  • Li H, Wu C, Li Y, Zhang Y (2013c) Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst. Chem Eng J 219:319–326

    CAS  Google Scholar 

  • Liao Y, Chen D, Zou S, Xiong S, Xiao X, Dang H, Chen T, Yang S (2016) Recyclable naturally derived magnetic pyrrhotite for elemental mercury recovery from flur gas. Environ Sci Technol 50:10562–10569

    CAS  Google Scholar 

  • Liu Z, Li X, Lee JY, Bolin TB (2015) Oxidation of elemental mercury vapor over γ-Al2O3 supported CuCl2 catalyst for mercury emissions control. Chem Eng J 275:1–7

    CAS  Google Scholar 

  • Ma J, Li C, Zhao L, Zhang J, Song J, Zeng G, Zhang X, Xie Y (2015) Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid. Appl Surf Sci 329:292–300

    CAS  Google Scholar 

  • Niksa S, Fujiwara N (2005) A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas. J Air Waste Manage Assoc 55:1866–1875

    CAS  Google Scholar 

  • Norton GA, Yang H, Brown RC, Laudal DL, Dunham GE, Erjavec J (2003) Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel 82:107–116

    CAS  Google Scholar 

  • Pavlish JH, Hamre LL, Zhuang Y (2010) Mercury control technologies for coal combustion and gasfication systems. Fuel 89:838–847

    CAS  Google Scholar 

  • Presto AA, Granite EJ (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40(18):5601–5609

    CAS  Google Scholar 

  • Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123

    CAS  Google Scholar 

  • Qu W, Yang Y, Shen F, Yang J, Fang S, Li H (2018) Theoretical study on Hg0 adsorption and oxidation mechanisms over CuCl2-impregnated carbonaceous material surface. Energy Fuel 32:7125–7131

    CAS  Google Scholar 

  • Rumayor M, Miranda N, Anton M, Somoano M, Tarazona M (2015) Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions. Fuel Process Technol 132:9–14

    CAS  Google Scholar 

  • Senior CL (2012) Oxidation of mercury across selective catalytic reduction catalysts in coal–fired power plants. J Air Waste Manage Assoc 56:23–31

    Google Scholar 

  • Sheng J, Li C, Zhao L, Gao L, Zeng G (2017) Efficient removal of HCHO from simulated coal combustion flue gas using CuO-CeO2 supported on cylindrical activated coke. Fuel 197:397–406

    CAS  Google Scholar 

  • Sjostrom S, Durham M, Bustard CJ, Martin C (2010) Activated carbon injection for mercury control: overview. Fuel 89:1320–1322

    CAS  Google Scholar 

  • Streets DG, Devane MK, Lu Z, Bond TC, Sunderland EM, Jacob DJ (2011) All-time releases of mercury to the atmosphere from human activities. Environ Sci Technol 45:10485–10491

    CAS  Google Scholar 

  • Sun P, Zhang B, Zeng X, Luo G, Li X, Yao H, Zheng C (2017) Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method. Fuel 200:100–106

    CAS  Google Scholar 

  • Tan Z, Su S, Qiu J, Kong F, Wang Z, Hao F, Xiang J (2012) Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal. Chem Eng J 195-196:218–225

    CAS  Google Scholar 

  • Tang L, Li C, Zhao L, Gao L, Du X, Zeng J, Zhang J, Zeng G (2018) A novel catalyst CuO-ZrO2 doped on Cl- activated bio-char for Hg0 removal in a broad temperature range. Fuel 218:366–374

    CAS  Google Scholar 

  • Tao S, Li C, Fan X, Zeng G, Lu P, Zhang X, Wen Q, Zhao W, Luo D, Fan C (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556

    CAS  Google Scholar 

  • Tsuji K, Shiraishi I (1990) Combined desulfurization and denitrification and reduction of air toxics using activated coke 1: activity of activated coke. Fuel 76:549–553

    Google Scholar 

  • Tsuji K, Shiraishi I (1997) Combined desulfurization, denitrification and reduction of air toxics using activated coke 2: process application and performance of activated coke. Fuel 76:555–560

    CAS  Google Scholar 

  • Wang Y, Liu Y, Wu Z, Mo J, Cheng B (2010) Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system. J Hazard Mater 183:902–907

    CAS  Google Scholar 

  • Wang P, Su S, Xiang J, Cao F, Sun L, Hu S, Lei S (2013) Catalytic oxidation of Hg0 by CuO–MnO2–Fe2O3/γ-Al2O3 catalyst. Chem Eng J 225:68–75

    CAS  Google Scholar 

  • Wang Y, Li C, Zhao L, Xie Y, Zhang X, Zeng G, Wu H, Zhang J (2016) Study on the removal of elemental mercury from simulated flue gas by Fe2O3-CeO2/AC at low temperature. Environ Sci Pollut Res 23:5099–5110

    CAS  Google Scholar 

  • Wu H, Li C, Zhao L, Zhang J, Zeng G, Xie Y, Zhang X, Wang Y (2015) Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoOx-CeO2 from simulated coal combustion flue gas. Energy Fuel 29:6747–6757

    CAS  Google Scholar 

  • Wu Q, Wang S, Li G, Liang S, Lin C, Wang Y, Cai S, Liu K, Hao J (2016) Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014. Environ Sci Technol 50:13428–13435

    CAS  Google Scholar 

  • Wu J, Zhao Z, Huang T, Zhang J, Tian H, Zhao X, Zhao L, He P, Ren J, Gao K (2017) Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catal Commun 93:62–66

    CAS  Google Scholar 

  • Yang H, Xu Z, Fan M, Bland AE, Judkins RR (2007) Adsorbents for capturing mercury in coal-fired boiler flue gas. J Hazard Mater 146:1–11

    CAS  Google Scholar 

  • Yang J, Zhao Y, Zhang J, Zheng C (2016a) Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 164:419–428

    CAS  Google Scholar 

  • Yang J, Zhao Y, Zhang J, Zheng C (2016b) Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism. Fuel 167:366–374

    CAS  Google Scholar 

  • Zeng J, Li C, Zhao L, Gao L, Du X, Zhang J, Tang L, Zeng G (2017) Removal of elemental mercury from simulated flue gas over peanut shells carbon loaded with iodine ions, manganese oxides, and zirconium dioxide. Energy Fuel 31:13909–13920

    CAS  Google Scholar 

  • Zhang A, Zheng W, Song J, Liu Z, Xiang J (2014) Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem Eng J 236:29–38

    CAS  Google Scholar 

  • Zhang B, Xu P, Qiu Y, Yu Q, Ma J, Wu H, Luo G, Xu M, Yao H (2015) Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem Eng J 263:1–8

    CAS  Google Scholar 

  • Zhang H, Chen J, Zhao K, Niu Q, Wang L (2016) Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping. J Fuel Chem Technol 44(4):394–400

    CAS  Google Scholar 

  • Zhang J, Li C, Zhao L, Wang T, Li S, Zeng G (2017a) A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg0 from simulated flue gas. Chem Eng J 313:1535–1547

    CAS  Google Scholar 

  • Zhang Y, Zhao L, Guo R, Wang J, Cao Y, Orndorff W, Pan W (2017b) Influences of NO on elemental adsorption characteristics for HBr modified fly ash. Int J Coal Geol 170:77–83

    CAS  Google Scholar 

  • Zhao L, Li C, Li S, Wang Y, Zhang J, Wang T, Zeng G (2016a) Simulateous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst. Appl Catal B Environ 198:420–430

    CAS  Google Scholar 

  • Zhao B, Yi H, Tang X, Li Q, Liu D, Gao F (2016b) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593

    CAS  Google Scholar 

  • Zhou J, Sui Z, Zhu J, Li P, Chen D, Dai Y, Yuan W (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45:785–796

    CAS  Google Scholar 

  • Zhou Z, Liu X, Liao Z, Shao H, Chen L, Hu Y, Xu M (2016a) Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature. Fuel Process Technol 152:285–293

    CAS  Google Scholar 

  • Zhou Z, Liu X, Liao Z, Shao H, Hu Y, Xu Y, Xu M (2016b) A novel low temperature catalyst regenerated from deactivated SCR catalyst for Hg0 oxidation. Chem Eng J 304:121–128

    CAS  Google Scholar 

  • Zhou Z, Liu X, Hu Y, Liao Z, Cheng S, Xu M (2018) An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas. Fuel 216:356–363

    CAS  Google Scholar 

  • Zhuang Y, Laumb J, Liggett R, Holmes M, Pavlish J (2007) Impacts of acid gases on mercury oxidation across SCR catalyst. Fuel Process Technol 88:929–934

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key research and Development Program of China (2016YFC0204100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiting Li.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, C., Du, X. et al. Promotional removal of gas-phase Hg0 over activated coke modified by CuCl2. Environ Sci Pollut Res 27, 17891–17909 (2020). https://doi.org/10.1007/s11356-019-06492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06492-1

Keywords

Navigation