Facile fabrication of nanosheet-assembled MnCoOx hollow flower-like microspheres as highly effective catalysts for the low-temperature selective catalytic reduction of NOx by NH3

Abstract

A series of MnCoOx flower-like hollow microspheres with various molecular proportions of reactant were prepared through simple solvothermal method for the ammonia selective catalytic reduction (SCR) at low temperatures. The as-prepared samples have been applied by various characterization techniques to explore the formation process of the morphology and physicochemical properties. The Mn(1)Co(1)Ox presented the optimal intrinsic catalytic performance (95% NOx conversion at 75 °C), favorable thermal stability, and strong SO2 resistance. The excellent properties mainly related to its higher specific surface area and abundant active sites originated from hollow microsphere special structure consists of abundant nanosheets, robust redox properties beneficial for the strong interaction between the manganese and cobalt, larger number of acidic sites and stronger acid strength, etc., which collaboratively dominate its catalytic properties of NH3-SCR at low temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aguilera DA, Perez A, Molina R, Moreno S (2011) Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl Catal B-environ 104:144–150. https://doi.org/10.1016/j.apcatb.2011.02.019

    CAS  Article  Google Scholar 

  2. Bin F, Song C, Lv G, Song J, Cao X, Pang H, Wang K (2012) Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia: a comparison between Co/ZSM-5 and Co/SBA-15. J Phys Chem 116:26262–26274. https://doi.org/10.1021/jp303830x

    CAS  Article  Google Scholar 

  3. Cai S, Liu J, Zha K, Li H, Shi L, Zhang D (2017) A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts. Nanoscale 9:5648–5657. https://doi.org/10.1039/C6NR09917C

    CAS  Article  Google Scholar 

  4. Chang T, Shen Z, Huang Y, Lu J, Ren D, Sun J, Cao J, Liu H (2018) Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chem Eng J 348:15–25. https://doi.org/10.1016/j.cej.2018.04.186

    CAS  Article  Google Scholar 

  5. Chen B, Liu N, Liu X, Zhang R, Li Y, Li Y, Sun X (2011) Study on the direct decomposition of nitrous oxide over Fe-beta zeolites from experiment to theory. Catal Today 175:245–255. https://doi.org/10.1016/j.cattod.2011.04.010

    CAS  Article  Google Scholar 

  6. Chen L, Li J, Ge M (2010) DRIFT Study on Cerium−Tungsten Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3. Environ Sci Technol 44:9590–9596. https://doi.org/10.1021/es102692b

    CAS  Article  Google Scholar 

  7. Cheng JH, Pan CJ, Lee JF, Chen JM, Guignard M, Delmas C, Hwang BJ (2014) Simultaneous reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 as evidenced by X-ray absorption spectroscopy during electrochemical sodium intercalation. Chem Mater 26:1219–1225. https://doi.org/10.1021/cm403597h

    CAS  Article  Google Scholar 

  8. Dai Y, Li JH, Peng Y, Tang XF (2012) Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature. Acta Phys -Chim Sin 28:1771–1776. https://doi.org/10.3866/pku.whxb201204175

    CAS  Article  Google Scholar 

  9. Fei Z, Yang Y, Wang M, Tao Z, Liu Q, Chen XH, Qiao X (2018) Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3. Chem Eng J 353:930–939. https://doi.org/10.1016/j.cej.2018.07.198

    CAS  Article  Google Scholar 

  10. Gao F, Tang X, Yi H, Chu C, Li N, Li J, Zhao S (2017a) In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem Eng J 332:525–537. https://doi.org/10.1016/j.cej.2017.04.006

    CAS  Article  Google Scholar 

  11. Gao F, Tang X, Yi H, Li J, Zhao S, Wang J, Chu C, Li C (2017b) Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem Eng J 317:20–31. https://doi.org/10.1016/j.cej.2017.02.042

    CAS  Article  Google Scholar 

  12. Gao F, Tang X, Yi H, Zhao S, Wang J, Shi Y, Meng X (2018) Novel Co– or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3 – SCR of NOx at low temperature. Appl Surf Sci 443:103–113. https://doi.org/10.1016/j.apsusc.2018.02.151

    CAS  Article  Google Scholar 

  13. Gao F, Tang X, Yi H, Zhao S, Wang J, Gu T (2019) Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Appl Surf Sci 466:411–424. https://doi.org/10.1016/j.apsusc.2018.09.227

    CAS  Article  Google Scholar 

  14. Gao G, Shi J-W, Fan Z, Gao C, Niu C (2017c) MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chem Eng J 325:91–100. https://doi.org/10.1016/j.cej.2017.05.059

    CAS  Article  Google Scholar 

  15. Gao T, Norby P, Krumeich F, Okamoto H, Nesper R, Fjellvåg H (2009) Synthesis and properties of layered-structured Mn5O8 nanorods. J Phys Chem C 114:922–928. https://doi.org/10.1021/jp9097606

    CAS  Article  Google Scholar 

  16. Hu H, Cai SX, Li HR, Huang L, Shi LY, Zhang DS (2015a) In situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NOx with NH3. J Phys Chem C 119:22924–22933. https://doi.org/10.1021/acs.jpcc.5b06057

    CAS  Article  Google Scholar 

  17. Hu H, Cai SX, Li HR, Huang L, Shi LY, Zhang DS (2015b) Mechanistic aspects of deNO(x) processing over TiO2 supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis. ACS Catal 5:6069–6077. https://doi.org/10.1021/acscatal.5b01039

    CAS  Article  Google Scholar 

  18. Hu X, Huang L, Zhang J, Li H, Zha K, Shi L, Zhang D (2018) Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3−xO4 as highly effective catalysts for low temperature SCR of NOx with NH3. J Mater Chem A 6:2952–2963. https://doi.org/10.1039/C7TA08000J

    CAS  Article  Google Scholar 

  19. Jin R, Liu Y, Wu Z, Wang H, Gu T (2010) Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere 78:1160–1166. https://doi.org/10.1016/j.chemosphere.2009.11.049

    CAS  Article  Google Scholar 

  20. Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269. https://doi.org/10.1016/j.apcata.2007.05.024

    CAS  Article  Google Scholar 

  21. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B-environ 3:173–189. https://doi.org/10.1016/0926-3373(93)E0034-9

    CAS  Article  Google Scholar 

  22. Li C, Tang X, Yi H, Wang L, Cui X, Chu C, Yu Q (2018) Rational design of template-free MnOx-CeO2 hollow nanotube as de-NOx catalyst at low temperature. Appl Surf Sci 428:924–932. https://doi.org/10.1016/j.apsusc.2017.09.131

    CAS  Article  Google Scholar 

  23. Li L, Cheah Y, Ko Y, Teh P, Wee G, Wong C, Srinivasan M (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem 1:10935–10941. https://doi.org/10.1039/C3TA11549F

    CAS  Article  Google Scholar 

  24. Li Q, Meng M, Zou ZQ, Li XG, Zha YQ (2009) Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts. J Hazard Mater 161:366–372. https://doi.org/10.1016/j.jhazmat.2008.03.103

    CAS  Article  Google Scholar 

  25. Li Y, Wan Y, Li YP, Zhan SH, Guan QX, Tian Y (2016) Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets. ACS Appl Mater Interfaces 8:5224–5233. https://doi.org/10.1021/acsami.5b10264

    CAS  Article  Google Scholar 

  26. Lian Z, Liu F, He H, Shi X, Mo J, Wu Z (2014) Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chem Eng J 250:390–398. https://doi.org/10.1016/j.cej.2014.03.065

    CAS  Article  Google Scholar 

  27. Liu FD, Shan WP, Lian ZH, Xie LJ, Yang WW, He H (2013) Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Cat Sci Technol 3:2699–2707. https://doi.org/10.1039/C3CY00326D

    CAS  Article  Google Scholar 

  28. Long RQ, Yang RT (2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst. J Catal 207:224–231. https://doi.org/10.1006/jcat.2002.3528

    CAS  Article  Google Scholar 

  29. Lu Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z, Zheng L (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interfaces 6:4186–4195. https://doi.org/10.1021/am405858v

    CAS  Article  Google Scholar 

  30. Meng B, Zhao Z, Wang X, Liang J, Qiu J (2013) Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes. Appl Catal B-environ 129:491–500. https://doi.org/10.1016/j.apcatb.2012.09.040

    CAS  Article  Google Scholar 

  31. Meng DM, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ (2015) A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catal 5:5973–5983. https://doi.org/10.1021/acscatal.5b00747

    CAS  Article  Google Scholar 

  32. Meng DM, Zhan WC, Guo Y, Guo YL, Wang YS, Wang L, Lu GZ (2016) A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: effect of the calcination temperature. J Mol Catal A-chem 420:272–281. https://doi.org/10.1016/j.molcata.2016.04.028

    CAS  Article  Google Scholar 

  33. Qi G, Yang RT (2004) Characterization and FTIR studies of MnOx−CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J Phys Chem B 108:15738–15747. https://doi.org/10.1021/jp048431h

    CAS  Article  Google Scholar 

  34. Qi GS, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B-environ 51:93–106. https://doi.org/10.1016/j.apcatb.2004.01.023

    CAS  Article  Google Scholar 

  35. Roy S, Hegde MS, Madras G (2019) Catalysis for NOx abatement. Appl Energy 86:2283–2297. https://doi.org/10.1016/j.apenergy.2009.03.022

    CAS  Article  Google Scholar 

  36. Shi J-W, Gao G, Fan Z, Gao C, Wang B, Wang Y, Li Z, He C, Niu C (2018) NiyCo1-yMn2Ox microspheres for the selective catalytic reduction of NOx with NH3: the synergetic effects between Ni and Co for improving low-temperature catalytic performance. Appl Catal A Gen 560:1–11. https://doi.org/10.1016/j.apcata.2018.04.033

    CAS  Article  Google Scholar 

  37. Shi Y, Tang X, Yi H, Gao F, Zhao S, Wang J, Zhang R (2019) Controlled synthesis of spinel-type mesoporous Mn–Co rods for SCR of NOx with NH3 at low temperature. Ind Eng Chem Res 58:3606–3617. https://doi.org/10.1021/acs.iecr.8b05223

    CAS  Article  Google Scholar 

  38. Sun P, Guo RT, Liu SM, Wang SX, Pan WG, Li MY (2017) The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Appl Catal A Gen 531:129–138. https://doi.org/10.1016/j.apcata.2016.10.027

    CAS  Article  Google Scholar 

  39. Thirupathi B, Smirniotis PG (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83. https://doi.org/10.1016/j.jcat.2012.01.003

    CAS  Article  Google Scholar 

  40. Wan YP, Zhao WR, Tang Y, Li L, Wang HJ, Cui YL, Gu JL, Li YS, Shi JL (2014) Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl Catal B-environ 148:114–122. https://doi.org/10.1016/j.apcatb.2013.10.049

    CAS  Article  Google Scholar 

  41. Wang XM, Li XY, Zhao QD, Sun WB, Tade M, Liu SM (2016) Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3. Chem Eng J 288:216–222. https://doi.org/10.1016/j.cej.2015.12.002

    CAS  Article  Google Scholar 

  42. Wang YL, Ge CZ, Zhan L, Li C, Qiao WM, Ling LC (2012) MnOx-CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Ind Eng Chem Res 51:11667–11673. https://doi.org/10.1021/ie300555f

    CAS  Article  Google Scholar 

  43. Wu Z, Jiang B, Liu Y, Wang H, Jin R (2007) DRIFT study of manganese titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environ Sci Technol 41:5812–5817. https://doi.org/10.1021/es0700350

    CAS  Article  Google Scholar 

  44. Xu L, Li XS, Crocker M, Zhang ZS, Zhu AM, Shi C (2013) A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. J Mol Catal A-chem 378:82–90. https://doi.org/10.1016/j.molcata.2013.05.021

    CAS  Article  Google Scholar 

  45. Yang LX, Zhu YJ, Tong H, Wang WW, Cheng GF (2006) Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J Solid State Chem 179:1225–1229. https://doi.org/10.1016/j.jssc.2006.01.033

    CAS  Article  Google Scholar 

  46. Yang NZ, Guo RT, Pan WG, Chen QL, Wang QS, Lu CZ (2016) The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Fuel 169:87–92. https://doi.org/10.1016/j.fuel.2015.12.009

    CAS  Article  Google Scholar 

  47. Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study. Appl Catal B-environ 110:71–80. https://doi.org/10.1016/j.apcatb.2011.08.027

    CAS  Article  Google Scholar 

  48. Yu Y, Miao J, Wang J, He C, Chen J (2017) Facile synthesis of CuSO4/TiO2 catalysts with superior activity and SO2 tolerance for NH3-SCR: physicochemical properties and reaction mechanism. Cat Sci Technol 7:1590–1601. https://doi.org/10.1039/C6CY02626E

    CAS  Article  Google Scholar 

  49. Yu Y, Chen C, He C, Miao J, Chen J (2018a) In situ growth synthesis of CuO@Cu-MOFs core-shell materials as novel low-temperature NH3-SCR catalysts. ChemCatChem 11:979–984. https://doi.org/10.1002/cctc.201801718

    CAS  Article  Google Scholar 

  50. Yu Y, Miao J, He C, Chen J, Li C, Douthwaite M (2018b) The remarkable promotional effect of SO2 on Pb-poisoned V2O5-WO3/TiO2 catalysts: an in-depth experimental and theoretical study. Chem Eng J 338:191–201. https://doi.org/10.1016/j.cej.2018.01.031

    CAS  Article  Google Scholar 

  51. Yu Y, Chen C, Ma M, Douthwaite M, He C, Miao J, Li C (2019) SO2 promoted in situ recovery of thermally deactivated Fe2(SO4)3/TiO2 NH3-SCR catalysts: from experimental work to theoretical study. Chem Eng J 361:820–829. https://doi.org/10.1016/j.cej.2018.12.149

    CAS  Article  Google Scholar 

  52. Zhan SH, Qiu MY, Yang SS, Zhu DD, Yu HB, Li Y (2014) Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3. J Mater Chem 2:20486–20493. https://doi.org/10.1039/C4TA04807E

    CAS  Article  Google Scholar 

  53. Zhang DS, Zhang L, Shi LY, Fang C, Li HR, Gao RH, Huang L, Zhang JP (2013a) In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 5:1127–1136. https://doi.org/10.1039/C2NR33006G

    CAS  Article  Google Scholar 

  54. Zhang L, Zhang DS, Zhang JP, Cai SX, Fang C, Huang L, Li HR, Gao RH, Shi LY (2013b) Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNO(x) catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale 5:9821–9829. https://doi.org/10.1039/C3NR03150K

    CAS  Article  Google Scholar 

  55. Zhang L, Shi LY, Huang L, Zhang JP, Gao RH, Zhang DS (2014) Rational design of high-performance DeNO(x) catalysts cased on MnxCo3-xO4 nanocages derived from metal-organic frameworks. ACS Catal 4:1753–1763. https://doi.org/10.1021/cs401185c

    CAS  Article  Google Scholar 

  56. Zhang Z, Zhang Y, Su Q, Wang Z, Li Q, Gao X (2010) Determination of intermediates and mechanism for soot combustion with NOx O2 on potassium-supported Mg−Al hydrotalcite mixed oxides by in situ FTIR. Environ Sci Technol 44:8254–8258. https://doi.org/10.1021/es102363f

    CAS  Article  Google Scholar 

  57. Zheng Y, Wang W, Jiang D, Zhang L (2016) Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity. Chem Eng J 284:21–27. https://doi.org/10.1016/j.cej.2015.08.137

    CAS  Article  Google Scholar 

  58. Zhou G, Zhong B, Wang W, Guan X, Huang B, Ye D, Wu H (2011) In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts. Catal Today 175:157–163. https://doi.org/10.1016/j.cattod.2011.06.004

    CAS  Article  Google Scholar 

  59. Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal 3:1154–1164. https://doi.org/10.1021/cs400068v

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (2017YFC0210303), National Natural Science Foundation of China (U1660109, 21806009), Project funded by China Postdoctoral Science Foundation (2018 M631344), and Fundamental Research Funds for the Central Universities (FRF-TP-18-019A1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Honghong Yi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Shi, Y., Yi, H. et al. Facile fabrication of nanosheet-assembled MnCoOx hollow flower-like microspheres as highly effective catalysts for the low-temperature selective catalytic reduction of NOx by NH3. Environ Sci Pollut Res 26, 35846–35859 (2019). https://doi.org/10.1007/s11356-019-06455-6

Download citation

Keywords

  • Hollow flower-like microsphere
  • Nanosheet self-assembly
  • Mixed oxide
  • NH3-SCR