Skip to main content

Advertisement

Log in

Investigating the effect of starch/Fe3O4 nanoparticles on biodesulfurization using molecular dynamic simulation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The application of dibenzothiophene (DBT) as a source of energy leads to air pollution. The key solution to overcome this drawback is desulfurization. Magnetic nanoparticles have shown an excellent performance in the desulfurization of dibenzothiophene. In this study, molecular dynamic (MD) simulation was considered for the first time to gain insight about the molecule interactions in the biodesulfurization (BDS) process of DBT using Rhodococcus erythropolis IGTS8, in the presence and absence of starch/magnetic nanoparticles. According to the MD simulation results, the density of the system in the presence of starch/Fe3O4 was ascending while in the absence of these nanoparticles, the density was descending. Starch/magnetic nanoparticles caused more rapid equilibrium state in the biodesulfurization process. The energy diagram showed that magnetic nanoparticles decrease the energy fluctuation and increase the difference of non-bounding energy and potential energy (8 times) compared to (BDS) without nanoparticle, which reflects higher bounded energy in the system using starch/magnetic nanoparticles. The height of RDF peak in the presence of starch/Fe3O4 was 4 times more than the RDF peak in the absence of nanoparticle. In addition, the nanoparticles decreased the fluctuations around optimal temperature in BDS up to 5% compared to other state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alamdar N, Rasekh B, Yazdian F (2018) Effects of Fe/SDS and Au nanoparticles on Pseudomonas aeroginosa bacterial growth and biosurfactant production. IET Nanobiotechnology 12:26–28. https://doi.org/10.1049/iet-nbt.2016.0260

    Article  Google Scholar 

  • Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102:1505–1512

    Article  CAS  Google Scholar 

  • Ashouri R, Ghasemipoor P, Rasekh B, Yazdian F, Mofradnia SR, fattahi M (2018) The effect of ZnO-based carbonaceous materials for degradation of benzoic pollutants: a review. Int J Environ Sci Technol 16:1–12. https://doi.org/10.1007/s13762-018-2056-5

    Article  CAS  Google Scholar 

  • Bernardi RC, Schulten K, Pascutti PG (2013) Molecular dynamics studies of buckminsterfullerene derivatives as drug carriers. Biophys J 104:335a

    Article  Google Scholar 

  • Das A, Ghosh MM (2015) MD simulation-based study on the melting and thermal expansion behaviors of nanoparticles under heat load. Comput Mater Sci 101:88–95. https://doi.org/10.1016/j.commatsci.2015.01.008

    Article  CAS  Google Scholar 

  • Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3:511–520

    Article  CAS  Google Scholar 

  • Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    Article  CAS  Google Scholar 

  • Kang M, Loverde SM (2014) Molecular simulation of the concentration-dependent interaction of hydrophobic drugs with model cellular membranes. J Phys Chem B 118:11965–11972

    Article  CAS  Google Scholar 

  • Karadima KS, Mavrantzas VG, Pandis SN (2017) Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions. Phys Chem Chem Phys 19:16681–16692

    Article  CAS  Google Scholar 

  • Karimi E, Jeffryes C, Yazdian F, Akhavan Sepahi A, Hatamian A, Rasekh B, Rashedi H, Omidi M, Ebrahim-Habibi MB, Ashrafi SJ (2017) DBT desulfurization by decorating Rhodococcus erythropolis IGTS8 using magnetic Fe3O4 nanoparticles in a bioreactor. Eng Life Sci 17:528–535

    Article  CAS  Google Scholar 

  • Karimi E, Yazdian F, Rasekh B, Jeffryes C, Rashedi H, Sepahi AA, Shahmoradi S, Omidi M, Azizi M, Bidhendi ME, Hatamian A (2018) DBT desulfurization by decorating bacteria using modified carbon nanotube. Fuel 216:787–795

    Article  CAS  Google Scholar 

  • Khezri A, Karimi A, Yazdian F, Jokar M, Mofradnia SR, Rashedi H, Tavakoli Z (2018) Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction. Int J Biol Macromol #pagerange# 114:972–978. https://doi.org/10.1016/j.ijbiomac.2018.03.100

    Article  CAS  Google Scholar 

  • Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Article  CAS  Google Scholar 

  • Lammers LN, Bourg IC, Okumura M, Kolluri K, Sposito G, Machida M (2017) Molecular dynamics simulations of cesium adsorption on illite nanoparticles. J Colloid Interface Sci 490:608–620

    Article  CAS  Google Scholar 

  • Liu X, Zhou G, Zhang X, Zhang S (2010) Molecular dynamics simulation of desulfurization by ionic liquids. AICHE J 56:2983–2996

    Article  CAS  Google Scholar 

  • Mofradnia SR, Ashouri R, Tavakoli Z et al (2018a) Effect of zero-valent iron/starch nanoparticle on nitrate removal using MD simulation. Int J Biol Macromol

  • Mofradnia SR, Tavakoli Z, Yazdian F, Rashedi H, Rasekh B (2018b) Fe/starch nanoparticle-Pseudomonas aeruginosa: Bio-physiochemical and MD studies. Int J Biol Macromol #pagerange# 117:51–61. https://doi.org/10.1016/j.ijbiomac.2018.04.191

    Article  CAS  Google Scholar 

  • Mukhopadhyaya M, Chowdhury R, Bhattacharya P (2006) Biodesulfurization of hydrodesulfurized diesel in a trickle bed reactor—experiments and modeling

  • Nandi S (2010) Biodesulfurization of hydro-desulfurized diesel in airlift reactor

  • Raheb J (2011) The study of biodesulfurization activity in recombinant E. coli strain by cloning the dsz genes involve in 4S pathway. J Sci Islam Repub Iran 22:213–219

    CAS  Google Scholar 

  • Raheb J, Hajipour MJ, Saadati M, Rasekh B, Memari B (2009) The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida. Iran Biomed J 13:207–213

    CAS  Google Scholar 

  • Rajab Beigy M, Rasekh B, Yazdian F, Aminzadeh B, Shekarriz M (2017) High nitrate removal by starch-stabilized Fe 0 nanoparticles in aqueous solution in a controlled system. Eng Life Sci 18:1–30. https://doi.org/10.1002/elsc.201700127

    Article  CAS  Google Scholar 

  • Rezapour N, Rasekh B, Mofradnia SR (2018) Molecular dynamics studies of polysaccharide carrier based on starch in dental cavities. Int J Biol Macromol #pagerange# 121:616–624. https://doi.org/10.1016/j.ijbiomac.2018.10.027

    Article  CAS  Google Scholar 

  • Sahebnazar Z, Mowla D, Karimi G, Yazdian F (2017) Zero-valent iron nanoparticles assisted purification of rhamnolipid for oil recovery improvement from oily sludge. J Environ Chem Eng 6:917–922. https://doi.org/10.1016/j.jece.2017.11.043

    Article  CAS  Google Scholar 

  • Shariatinia Z, Jalali AM, Taromi FA (2016) Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes. Model Simul Mater Sci Eng 24:35002

    Article  Google Scholar 

  • SHILPI A (2012) In silico modeling and analysis for improving desulfurizing bacterial strains

  • Song C (2000) Chemistry of diesel fuels. CRC Press

  • Vlachakis D, Bencurova E, Papangelopoulos N, Kossida S (2014) Current state-of-the-art molecular dynamics methods and applications. In: Advances in Protein Chemistry and Structural Biology Elsevier, pp 269–313

  • Wang H, Feng Y, Zhang X, Lin W, Zhao Y (2015) Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation. Fuel 145:241–248

    Article  CAS  Google Scholar 

  • Wei H, Wei S, Zhu X, Lu X (2017) Investigation of structural, thermal, and dynamical properties of Pd–Au–Pt ternary metal nanoparticles confined in carbon nanotubes based on MD simulation. J Phys Chem C 121:12911–12920

    Article  CAS  Google Scholar 

  • Wizert A, Iskander DR, Cwiklik L (2017) Interaction of lysozyme with a tear film lipid layer model: a molecular dynamics simulation study. Biochim Biophys Acta (BBA)-Biomembranes 1859:2289–2296

    Article  CAS  Google Scholar 

  • Yazdian F, Rasekh B, Rashedi H, Rostami AD (2016) Effect of metal nanoparticles on biological denitrification process: a review. J Appl Biotechnol Reports 3:353–358

    Google Scholar 

  • Zheng X, Su Y, Chen Y, Wan R, Liu K, Li M, Yin D (2014) Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environ Sci Technol 48:13800–13807

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Yazdian or Behnam Rasekh.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabaghian, S., Yazdian, F., Rasekh, B. et al. Investigating the effect of starch/Fe3O4 nanoparticles on biodesulfurization using molecular dynamic simulation. Environ Sci Pollut Res 27, 1667–1676 (2020). https://doi.org/10.1007/s11356-019-06453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06453-8

Keywords

Navigation