Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China

Abstract

Asymmetric warming has been increasingly discussed recently, yet knowledge of this difference in warming between daytime and nighttime is still limited. Most studies of how climate warming influences the terrestrial ecosystem often ignore this asymmetric effect. We investigated the change in temperature between daytime and nighttime and analyzed the relationships between normalized difference vegetation index and the temperature in the daytime (Tmax) and the nighttime (Tmin) from 1982 to 2015 in temperate China. Results showed a faster increase in Tmin (0.46 °C dec−1, p < 0.01) during the nighttime than in Tmax (0.42 °C dec−1, p < 0.01) during the daytime, which indicated an asymmetric warming rate. The asymmetric warming during the daytime and nighttime was closely related to variations in precipitation and solar radiation. The increasing Tmin and Tmax were most pronounced over a large portion of the entire temperate China, and their warming trends displayed a non-uniform spatial distribution. The area with daytime warming was larger than that with nighttime warming, approximately accounting for 99.53% and 96.22% of temperate China, respectively. The area with warming enhancing vegetation greenness was larger during the day (71.16% of temperate China, p < 0.05) than at night (61.60% of temperate China, p < 0.05), and vice versa, which presented asymmetric warming effects on China’s temperate vegetation. We also found clear differences in the responses of the normalized difference vegetation index among different vegetation biomes to this asymmetric warming. Averagely, Tmax was significantly related to the NDVI of shrub, desert, broadleaf forest, needleleaf forest, and swamp (p < 0.01). However, this similar relationship appeared only between Tmin and desert vegetation (p < 0.01). Our findings emphasized the crucial role of asymmetric warming between the daytime maxima and nighttime minima in climate change research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cao R, Shen M, Zhou J, Chen J (2018) Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agric For Meteorol 249:176–186. https://doi.org/10.1016/j.agrformet.2017.11.032

    Article  Google Scholar 

  2. Collatz GJ, Bounoua L, Los SO, Randall DA, Fung IY, Sellers PJ (2000) A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys Res Lett 27:3381–3384. https://doi.org/10.1029/1999gl010947

    Article  Google Scholar 

  3. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2

    Article  Google Scholar 

  4. Davy R, Esau I, Chernokulsky A, Outten S, Zilitinkevich S (2017) Diurnal asymmetry to the observed global warming. Int J Climatol 37:79–93. https://doi.org/10.1002/joc.4688

    Article  Google Scholar 

  5. De Jong R, Verbesselt J, Schaepman ME, De Bruin S (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob Chang Biol 18:642–655. https://doi.org/10.1111/j.1365-2486.2011.02578.x

    Article  Google Scholar 

  6. De La Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574. https://doi.org/10.1093/bioinformatics/bth445

    CAS  Article  Google Scholar 

  7. Easterling DR et al (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367. https://doi.org/10.1126/science.277.5324.364

    CAS  Article  Google Scholar 

  8. Folland CK, Karl TR, Jim Salinger M (2002) Observed climate variability and change. Weather 57:269–278 https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/004316502320517353

    Article  Google Scholar 

  9. Fu YH, Liu Y, De Boeck HJ, Menzel A, Nijs I, Peaucelle M, Penuelas J, Piao S, Janssens IA (2016) Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytol 212:590–597. https://doi.org/10.1111/nph.14073

    CAS  Article  Google Scholar 

  10. Ganjurjav H, Gao QZ, Gornish ES, Schwartz MW, Liang Y, Cao XJ, Zhang WN, Zhang Y, Li WH, Wan YF, Li Y, Danjiu L, Guo HB, Lin E (2016) Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agric For Meteorol 223:233–240. https://doi.org/10.1016/j.agrformet.2016.03.017

    Article  Google Scholar 

  11. He B, Chen A, Jiang W, Chen Z (2017) The response of vegetation growth to shifts in trend of temperature in China. J Geogr Sci 27:801–816. https://doi.org/10.1007/s11442-017-1407-3

    Article  Google Scholar 

  12. Jiang L, Guli J, Bao A, Guo H, Ndayisaba F (2017) Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci Total Environ 599-600:967–980. https://doi.org/10.1016/j.scitotenv.2017.05.012

    CAS  Article  Google Scholar 

  13. Karl TR, Jones PD, Knight RW, Kukla G, Plummer N (1993) Asmmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc 74:1007–1023. https://doi.org/10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2

    Article  Google Scholar 

  14. Karl TR, Kukla G, Razuvayev VN, Changery MJ, Quayle RG, Heim RR, Easterling DR, Fu CB (1991) Global warming: evidence for asymmetric diurnal temperature change. Geophys Res Lett 18:2253–2256. https://doi.org/10.1029/91gl02900

    Article  Google Scholar 

  15. Kim Y, Kimball JS, Zhang K, McDonald KC (2012) Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens Environ 121:472–487. https://doi.org/10.1016/j.rse.2012.02.014

    Article  Google Scholar 

  16. Li X, Zhang X, Zhang L (2017) Observed effects of vegetation growth on temperature in the early summer over the Northeast China Plain. Atmosphere:8. https://doi.org/10.3390/atmos8060097

    Article  Google Scholar 

  17. Liu B, Xu M, Henderson M, Qi Y, Li Y (2004) Taking China’s temperature: daily range, warming trends, and regional variations, 1955-2000. J Clim 17:4453–4462. https://doi.org/10.1175/3230.1

    Article  Google Scholar 

  18. Liu Q, Fu YH, Zeng Z, Huang M, Li X, Piao S (2016) Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob Chang Biol 22:644–655. https://doi.org/10.1111/gcb.13081

    CAS  Article  Google Scholar 

  19. Lobell DB (2007) Changes in diurnal temperature range and national cereal yields. Agric For Meteorol 145:229–238. https://doi.org/10.1016/j.agrformet.2007.05.002

    Article  Google Scholar 

  20. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702. https://doi.org/10.1038/386698a0

    CAS  Article  Google Scholar 

  21. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. https://doi.org/10.1126/science.1082750

    CAS  Article  Google Scholar 

  22. Pei F, Li X, Liu X, Wang S, He Z (2013) Assessing the differences in net primary productivity between pre- and post-urban land development in China. Agric For Meteorol 171-172:174–186. https://doi.org/10.1016/j.agrformet.2012.12.003

    Article  Google Scholar 

  23. Peng S, Piao S, Ciais P, Myneni RB, Chen A, Chevallier F, Dolman AJ, Janssens IA, Penuelas J, Zhang G, Vicca S, Wan S, Wang S, Zeng H (2013) Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501:88–92. https://doi.org/10.1038/nature12434

    CAS  Article  Google Scholar 

  24. Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006) Variations in satellite-derived phenology in China’s temperate vegetation. Glob Chang Biol 12:672–685. https://doi.org/10.1111/j.1365-2486.2006.01123.x

    Article  Google Scholar 

  25. Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y, Myneni RB, Peng S, Shen M, Peñuelas J (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911. https://doi.org/10.1038/ncomms7911

    CAS  Article  Google Scholar 

  26. Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate boreal Eurasia from 1982 to 2006. Glob Chang Biol 17:3228–3239. https://doi.org/10.1111/j.1365-2486.2011.02419.x

    Article  Google Scholar 

  27. Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178-179:31–45. https://doi.org/10.1016/j.agrformet.2012.12.006

    Article  Google Scholar 

  28. Qu L, Xiao H, Zheng N, Zhang Z, Xu Y (2017) Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China. Environ Sci Pollut Res 24:2578–2588. https://doi.org/10.1007/s11356-016-7995-0

    CAS  Article  Google Scholar 

  29. Rossi S, Isabel N (2017) Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming. Glob Chang Biol 23:446–454. https://doi.org/10.1111/gcb.13360

    Article  Google Scholar 

  30. Sadras VO, Moran MA (2013) Asymmetric warming effect on the yield and source: sink ratio of field-grown grapevine. Agric For Meteorol 173:116–126. https://doi.org/10.1016/j.agrformet.2012.12.005

    Article  Google Scholar 

  31. Shen M, Piao S, Chen X, An S, Fu YH, Wang S, Cong N, Janssens IA (2016) Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob Chang Biol 22:3057–3066. https://doi.org/10.1111/gcb.13301

    Article  Google Scholar 

  32. Shen M, Tang Y, Chen J, Yang W (2012) Specification of thermal growing season in temperate China from 1960 to 2009. Clim Chang 114:783–798. https://doi.org/10.1007/s10584-012-0434-4

    Article  Google Scholar 

  33. Shen X, Liu B, Li G, Wu Z, Jin Y, Yu P, Zhou D (2014) Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J Geophys Res-Atmos 119:13163–13179. https://doi.org/10.1002/2014JD022326

    Article  Google Scholar 

  34. Shen X, Liu B, Li G, Zhou D (2015) Impact of climate change on temperate and alpine grasslands in China during 1982–2006. Adv Meteorol 2015:1–10. https://doi.org/10.1155/2015/180614

    Article  Google Scholar 

  35. Su H, Li G (2012) Simulating the response of the Quercus mongolicaforest ecosystem carbon budget to asymmetric warming. Chin Sci Bull (Chinese Version) 57:1544–1552. https://doi.org/10.1360/972012-236

    Article  Google Scholar 

  36. Tan J, Piao S, Chen A, Zeng Z, Ciais P, Janssens IA, Mao J, Myneni RB, Peng S, Penuelas J, Shi X, Vicca S (2015) Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Glob Chang Biol 21:377–387. https://doi.org/10.1111/gcb.12724

    Article  Google Scholar 

  37. Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant Cell Environ 25:1729–1737. https://doi.org/10.1046/j.1365-3040.2002.00947.x

    CAS  Article  Google Scholar 

  38. Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32. https://doi.org/10.1029/2005gl024379

  39. Wan S, Xia J, Liu W, Niu S (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90:2700–2710. https://doi.org/10.1890/08-2026.1

    Article  Google Scholar 

  40. Wang L, Lee X, Schultz N, Chen S, Wei Z, Fu C, Gao Y, Yang Y, Lin G (2018) Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia. J Geophys Res-Atmos 123:948–964. https://doi.org/10.1002/2017jd027522

    Article  Google Scholar 

  41. Welch JR, Vincent JR, Auffhammer M, Moya P, Dobermann A, Dawe D (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. PNAS 107:14562–14567. https://doi.org/10.1073/pnas.1001222107

    Article  Google Scholar 

  42. Wu X, Liu H, Li X, Liang E, Beck PS, Huang Y (2016) Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate. Sci Rep 6:19000. https://doi.org/10.1038/srep19000

    CAS  Article  Google Scholar 

  43. Wu Z, Wu J, Liu J, He B, Lei T, Wang Q (2013) Increasing terrestrial vegetation activity of ecological restoration program in the Beijing–Tianjin Sand Source Region of China. Ecol Eng 52:37–50. https://doi.org/10.1016/j.ecoleng.2012.12.040

    Article  Google Scholar 

  44. Xia J, Chen J, Piao S, Ciais P, Luo Y, Wan S (2014) Terrestrial carbon cycle affected by non-uniform climate warming. Nat Geosci 7:173–180. https://doi.org/10.1038/ngeo2093

    CAS  Article  Google Scholar 

  45. Yang Z, Jiang L, Su F, Zhang Q, Xia J, Wan S (2016) Nighttime warming enhances drought resistance of plant communities in a temperate steppe. Sci Rep 6:23267. https://doi.org/10.1038/srep23267

    CAS  Article  Google Scholar 

  46. You Q, Kang S, Aguilar E, Pepin N, Flügel WA, Yan Y, Xu Y, Zhang Y, Huang J (2010) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn 36:2399–2417. https://doi.org/10.1007/s00382-009-0735-0

    Article  Google Scholar 

  47. Zhang X, Tang Q, Zheng J, Ge Q (2013) Warming/cooling effects of cropland greenness changes during 1982–2006 in the North China Plain. Environ Res Lett 8:024038. https://doi.org/10.1088/1748-9326/8/2/024038

    Article  Google Scholar 

  48. Zheng J, Yin Y, Li B (2010) A new scheme for climate regionalization in China. Acta Geograph Sin 65:3–12. https://doi.org/10.11821/xb201001002

    Article  Google Scholar 

  49. Zhou L, Dai A, Dai Y, Vose RS, Zou C-Z, Tian Y, Chen H (2008) Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim Dyn 32:429–440. https://doi.org/10.1007/s00382-008-0387-5

    Article  Google Scholar 

  50. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083. https://doi.org/10.1029/2000JD000115

    Article  Google Scholar 

  51. Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian Y, Liu Y, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N (2016) Greening of the Earth and its drivers. Nat Clim Chang 6:791–795. https://doi.org/10.1038/nclimate3004

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the comments from the editor and anonymous reviewers.

Funding

The work was financially supported by the National Natural Science Foundation of China (U1810101, 41161066, and 41871193), and the Important Specialized Science and Technology Item of the Shanxi Province (Grant no.20121101011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Du.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Hailong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Zhao, J., Liu, X. et al. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China. Environ Sci Pollut Res 26, 35717–35727 (2019). https://doi.org/10.1007/s11356-019-06440-z

Download citation

Keywords

  • Vegetation greenness
  • Normalized difference vegetation index (NDVI)
  • Daytime and nighttime warming
  • Temperate China