Skip to main content

A critical review of cast-off crab shell recycling from the perspective of functional and versatile biomaterials

Abstract

Shellfish cultivation is an expanding economic activity worldwide. However, the rapid development of crab farming and processing result in a large number of crab shells (CS). Utilizing CS could not only benefit the environment and economy but also promote the sustainable development of aquaculture. In this work, it reviews and analyzes recent attempts in CS recycling, including extracting chitin and its derivatives, for use as adsorbent and flocculant and for preparing polymer composites and catalysts, as well as medical applications. The challenges in these utilizations are discussed, and future research directions are proposed as well. Extracting chitin and its derivates, for use as adsorbent and flocculant, are recent major recycling approaches. Preparing polymer composites and carbon materials has gained more and more attentions. Biotechnology is an alternative method for extracting chitin and its derivates from CS, and high-efficiency desalted and deproteinized bacteria need to be screened. Immobilizing the CS-based adsorbents is the key of treating wastewater in continuous systems. Using CS as a biofiller to prepare polymer composites is promising, and surface modification to improve the interfacial compatibility between CS-based fillers and matrix needs to be further studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmed J, Mulla M, Arfat YA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll 71:141–148

    CAS  Google Scholar 

  2. Akinwole IE, Alebiowu G, Oyatogun GM, Abere DV, Oluwasegun KM, Oyatogun AO, Abioye AA, Abioye OP, Adenigba AE, Ayodele TJ (2018) Synthesis and characterization of cowry and crab shells based chitosan for drug delivery. Bioceram Dev Appl 8(1):1–6

    Google Scholar 

  3. An HK, Park BY, Kim DS (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35(15):3551–3556

    CAS  Google Scholar 

  4. Balea A, Monte MC, Fuente E, Sanchez-Salvador JL, Blanco A, Negro C (2019) Cellulose nanofibers and chitosan to remove flexographic inks from wastewaters. Environ Sci: Water Res Technol 5:1558–1567. https://doi.org/10.1039/c9ew00434c

    CAS  Article  Google Scholar 

  5. Benhabiles MS, Drouiche N, Lounici H, Pauss A, Mameri N (2013) Effect of shrimp chitosan coatings as affected by chitosan extraction processes on postharvest quality of strawberry. J Food Meas Charact 7(4):215–221

    Google Scholar 

  6. Bin D, Guo ZY, Tamirat AG, Ma Y, Wang Y, Xia Y (2017) Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo2O4 nanoparticles as bifunctional oxygen catalysts for rechargeable Zn–air batteries. Nanoscale 9:11148–11157

    CAS  Google Scholar 

  7. Blockx J, Verfaillie A, Thielemans W, Muylaert K (2018) Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sustain Chem Eng 6(9):11273–11279

    CAS  Google Scholar 

  8. Boey PL, Maniam GP, Hamid SA (2009) Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour Technol 100:6362–6368

    CAS  Google Scholar 

  9. Boßelm F, Romano P, Fabriti HO, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 463:65–68

    Google Scholar 

  10. Brine CJ, Austin PR (1981) Chitin variability with species and method of preparation. Comp Biochem Physiol 69B:283–286

    CAS  Google Scholar 

  11. Cadogan EI, Lee CH, Popuri SR, Lin HY (2014) Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: synthesis and characterization. Int Biodeterior Biodegradation 95:232–240

    CAS  Google Scholar 

  12. Cai L, Zhang Y, Zhou Y, Zhang X, Ji L, Song W, Zhang H, Liu J (2019) Effective adsorption of diesel oil by crab-shell-derived biochar nanomaterials. Materials 12(2):236

    CAS  Google Scholar 

  13. Chen CC, Li DG, Hu QQ, Wang R (2014) Properties of polymethyl methacrylate-based nanocomposites: reinforced with ultra-long chitin nanofiber extracted from crab shells. Mater Des 56:1049–1056

    CAS  Google Scholar 

  14. Cheng S, Qiao Y, Huang J, Yu Y, Xu M (2019) Effects of Ca and Na acetates on nitrogen transformation during sewage sludge pyrolysis. Proc Combust Inst 37(3):2715–2722

    CAS  Google Scholar 

  15. Chien RC, Yen MT, Mau JL (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264

    CAS  Google Scholar 

  16. Dai L, Tan F, Li H, Zhu N, He M, Zhu Q, Zhao J (2017) Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J Environ Manag 198:70–74

    CAS  Google Scholar 

  17. Dai L, Zhu W, He L, Tan F, Zhu N, Zhou Q, Hu G (2018) Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal. Bioresour Technol 267:510–516

    CAS  Google Scholar 

  18. Devi MG, Al-kindi RS, Chandrasekar G, Syed MA, Feroz S (2015) Treatment of textile mill effluent using low molecular weight crab shell chitosan. Desalin Water Treat 56:1458–1464

    CAS  Google Scholar 

  19. Devi MG, Al-Shukaili MAN, Ali SM (2016) Treatability studies of pharmaceutical industry waste water using low molecular weight crab shell chitosan. J Chitin Chitosan Sci 4(1):28–32

    Google Scholar 

  20. Di Nardo T, Hadad C, Van Nhien AN, Moores A (2019) Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chem 21:3276–3285

    Google Scholar 

  21. Ferhat M, Kadouche S, Drouiche N, Messaoudi K, Lounici H (2016) Competitive adsorption of toxic metals on bentonite and use of chitosan as flocculent coagulant to speed up the settling of generated clay suspensions. Chemosphere 165:87–93

    CAS  Google Scholar 

  22. Feria-Diaz JJ, Tavera-Quiroz MJ, Vergara-Suarez O (2018) Efficiency of chitosan as a coagulant for wastewater from slaughterhouses. Indian J Sci Technol 11:3

    Google Scholar 

  23. Fernando LAT, Poblete MRS, Ongkiko AGM, Diaz LJL (2016) Chitin extraction and synthesis of chitin-based polymer films from Philippine blue swimming crab (Portunus pelagicus) shells. Procedia Chemistry 19:462–468

    CAS  Google Scholar 

  24. Fu M, Chen W, Zhu X, Yang B, Liu Q (2019) Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 141:748–757

    CAS  Google Scholar 

  25. Gao Y, Xu S, Yue Q, Wu Y, Gao B (2016) Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. J Taiwan Inst Chem Eng 61:327–335

    CAS  Google Scholar 

  26. Ghanbari E, Khazaei MR, Ahangar P, Khazaei M (2019) Crab shell extract improves sperm parameters and antioxidant status in testes of diabetic rats. J Diet Suppl 6:215–226

    Google Scholar 

  27. Ghimici L, Dinu IA (2019) Removal of some commercial pesticides from aqueous dispersions using as flocculant a thymine-containing chitosan derivative. Sep Purif Technol 209:698–706

    CAS  Google Scholar 

  28. Hajji S, Ghorbel-Bellaaj O, Younes I, Jellouli K, Nasri M (2015) Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. Int J Biol Macromol 79:167–173

    CAS  Google Scholar 

  29. Hamdi M, Hammami A, Hajji S, Jridi M, Nasri M, Nasri R (2017) Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int J Biol Macromol 101:455–463

    CAS  Google Scholar 

  30. Hamdi M, Hajji S, Affes S, Taktak W, Maâlej H, Nasri M, Nasri R (2018) Development of a controlled bioconversion process for the recovery of chitosan from blue crab (Portunus segnis) exoskeleton. Food Hydrocoll 77:534–548

    CAS  Google Scholar 

  31. He H, Chen X, Sun C, Zhang Y, Gao P (2006) Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresour Technol 97:385–390

    CAS  Google Scholar 

  32. Hoque NA, Thakur P, Biswas P, Saikh MM, Roy S, Bagchi B, Ray PP (2018) Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator. J Mater Chem A 6:13848–13858

    CAS  Google Scholar 

  33. Hossain KFB, Sikder MT, Rahman MM, Uddin MK, Kurasaki M (2017) Investigation of chromium removal efficacy from tannery effluent by synthesized chitosan from crab shell. Arab J Sci Eng 42:1569–1577

    CAS  Google Scholar 

  34. Ifuku S (2014) Chitin and Chitosan Nanofibers: Preparation and chemical modifications. Molecules 19:18367–18380

    Google Scholar 

  35. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588

    CAS  Google Scholar 

  36. Indumathi MP, Rajarajeswari GR (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol 124:163–174

    Google Scholar 

  37. Jeon C (2015) Adsorption behavior of silver ions from industrial wastewater onto immobilized crab shell beads. J Ind Eng Chem 32:195–200

    CAS  Google Scholar 

  38. Jeon DJ, Yeom SH (2009) Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate. Bioresour Technol 100:2646–2649

    CAS  Google Scholar 

  39. Jo GH, Jung WJ, Kuk JH, Oh KT, Kim YJ, Park RD (2008) Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr Polym 74:504–508

    CAS  Google Scholar 

  40. Kadouche S, Lounici H, Benaoumeur K, Drouiche N, Hadioui M, Sharrock P (2012) Enhancement of sedimentation velocity of heavy metals loaded hydroxyapatite using chitosan extracted from shrimp waste. J Polym Environ 20(3):848–857

    CAS  Google Scholar 

  41. Kim HS, Kang MS, Yoo WC (2018) CO3O4 nanocrystals on crab shell-derived carbon nanofibers (CO3O4@CSCNs) for high-performance supercapacitors. Bull Kor Chem Soc 39:327–334

    CAS  Google Scholar 

  42. Knorr D (1991) Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol 34:114–120

    Google Scholar 

  43. Kumari S, Annamareddy SHK, Abanti S, Rath PK (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol 104:1697–1705

    CAS  Google Scholar 

  44. Lage-Yusty MA, Vilasoa-Martínez M, Álvarez-Pérez S, López-Hernández J (2011) Chemical composition of snow crab shells (Chionoecetes opilio) [Composición química delcaparazón delcangrejo de las nieves (Chionoecetes opilio)]. J Food 9(4):265–270

    Google Scholar 

  45. Laribi-Habchi H, Bouanane-Darenfed A, Drouiche N, Pauss A, Mameri N (2015) Purification, characterization, and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from wastewater samples in Algeria. Int J Biol Macromol 72:1117–1128

    CAS  Google Scholar 

  46. Lassoued I, Hajji S, Mhamdi S, Jridi M, Bayoudh A, Barkia A, Nasri M (2015) Digestive alkaline proteases from thornback ray (Raja clavata): characteristics and applications. Int J Biol Macromol 80:668–675

    CAS  Google Scholar 

  47. Lee Y, Kim HW, Kim YHB (2018) New route of chitosan extraction from blue crabs and shrimp shells as flocculants on soybean solutes. Food Sci Biotechnol 27(2):461–466

    CAS  Google Scholar 

  48. Liu HJ, Wang XM, Cui WJ, Dou YQ, Zhao DY, Xia YY (2010) Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 20:4223–4230

    CAS  Google Scholar 

  49. Loganathan K, Saththasivam J, Sarp S (2018) Removal of microalgae from seawater using chitosan-alum/ferric chloride dual coagulations. Desalination 433:25–32

    CAS  Google Scholar 

  50. Lu LC, Wang CI, Sye WF (2011) Applications of chitosan beads and porous crab shell powder for the removal of 17 organochlorine pesticides (OCPs) in water solution. Carbohydr Polym 83:1984–1989

    CAS  Google Scholar 

  51. Madhu D, Chavan SB, Singh V, Singh B, Sharma YC (2016) An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst. Bioresour Technol 214:210–217

    CAS  Google Scholar 

  52. Makalani F, Khazaei MR, Ghanbari E, Khazaei M (2017) Crab shell extract improves serum biochemical markers and histological changes of pancreas in diabetic rats. Int J Morphol 35(4):1437–1443

    Google Scholar 

  53. Merayo N, Balea A, de la Fuente E, Blanco A, Negro C (2017) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24(7):2987–3000

    CAS  Google Scholar 

  54. Mirzapur P, Rashidi Z, Rezakhani L, Khazaei M (2015) In vitro inhibitory effect of crab shell extract on human umbilical vein endothelial cell. Animal 51:36–41

    Google Scholar 

  55. Mortuza MF, Rahman MH, Rahman MH (2017) Isolation, biochemical and genetic characterization of extracellular protease producing cattle hide dehairing bacterium—a potential alternative to chemical dehairing. Ecol Genet Genomics 2:3–12

    Google Scholar 

  56. Murugan K, Anitha J, Dinesh D (2016) Fabrication of nano-mosquitocides using chitosan from crab shells: impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Saf 132:318–328

    CAS  Google Scholar 

  57. Nair KG, Dufresne A (2003a) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3):657–665

    CAS  Google Scholar 

  58. Nair KG, Dufresne A (2003b) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3):666–674

    CAS  Google Scholar 

  59. Nair KG, Dufresne A (2003c) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842

    CAS  Google Scholar 

  60. Niu CH, Volesky B, Cleiman D (2007) Biosorption of arsenic (V) with acid-washed crab shells. Water Res 41:2473–2478

    CAS  Google Scholar 

  61. Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK (2018) Enhanced antibacterial effect of chitosan film using montmorillonite/CuO nanocomposite. Int J Biol Macromol 109:1219–1231

    CAS  Google Scholar 

  62. Oh KT, Kim YJ, Nguyen VN, Jung WJ, Park RD (2007) Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem 42:1069–1074

    CAS  Google Scholar 

  63. Olorunsola EO, Uwah TO, Olayemi OJ, Etukudo UB (2016) Ex-vivo evaluation of crab shell chitosan as absorption enhancer in ciprofloxacin tablet formulation. Afr J Biotechnol 15(36):1930–1935

    CAS  Google Scholar 

  64. Osada M, Miura C, Nakagawa YS (2015) Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation. Carbohydr Polym 134:718–725

    CAS  Google Scholar 

  65. Patidar P, Agrawal D, Banerjee T, Patil S (2005) Optimisation of process parameters for chitinase production by soil isolates of Penicillium chrysogenum under solid substrate fermentation. Process Biochem 40(9):2962–2967

    CAS  Google Scholar 

  66. Pradhan S, Shukla SS, Dorris KL (2005) Removal of nickel from aqueous solutions using crab shells. J Hazard Mater B125:201–204

    Google Scholar 

  67. Qi W, Liu G, He C, Liu S, Lu S, Yue J, Wang Q, Wang Z, Jianhua Hu J (2019) An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chem 21(6):1292–1304

    CAS  Google Scholar 

  68. Ramdani N, Wang J, He XY (2014) Effect of crab shell particles on the thermomechanical and thermal properties of polybenzoxazine matrix. Mater Des 61:1–7

    CAS  Google Scholar 

  69. Ramírez-Coutiño L, Marín-Cervantes MC, Huerta S (2006) Enzymatic hydrolysis of chitin in the production of oligosaccharides using Lecanicillium fungicola chitinases. Process Biochem 41(5):1106–1110

    Google Scholar 

  70. Rao MS, Muñoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54:808–813

    CAS  Google Scholar 

  71. Rezakhani L, Khazaei MR, Ghanbari A, Khazaei M (2017) Crab shell extract induces prostate cancer cell line (LNcap) apoptosis and decreases nitric oxide secretion. Cell J (Yakhteh) 19(2):231–237

    Google Scholar 

  72. Robinson-Lora MA, Brennan RA (2009) The use of crab-shell chitin for biological denitrification: batch and column tests. Bioresour Technol 100:534–541

    CAS  Google Scholar 

  73. Robinson-Lora MA, Brennan RA (2011) Anaerobic precipitation of manganese and co-existing metals in mine impacted water treated with crab shell-associated minerals. Appl Geochem 26:853–862

    CAS  Google Scholar 

  74. Routray W, Dave D, Cheema SK, Ramakrishnan VV, Pohling J (2019) Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Crit Rev Biotechnol 39(4):469–488

    CAS  Google Scholar 

  75. Samrot AV, Burman U, Philip SA (2018) Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform Med Unlocked 10:159–182

    Google Scholar 

  76. Sanchez-Salvador J, Balea A, Monte M, Blanco A, Negro C (2018) Study of the reaction mechanism to produce nanocellulose-graft-chitosan polymer. Nanomaterials 8(11):883

    Google Scholar 

  77. Satam CC, Irvin CW, Lang AW (2018) Spray-coated multilayer cellulose nanocrystal—chitin nanofiber films for barrier applications. ACS Sustain Chem Eng 6:10637–10644

    CAS  Google Scholar 

  78. Shams MI, Nogi M, Berglund LA, Yano H (2012) The transparent crab: preparation and nanostructural implications for bioinspired optically transparent nanocomposites. Soft Matter 8(5):1369–1373

    Google Scholar 

  79. Shao HY, Ai F, Wang WK (2017) Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium–sulfur batteries. J Mater Chem A 5:19892–19900

    CAS  Google Scholar 

  80. Shavandi A, Bekhit AEA, Ali MA, Sun ZF (2015) Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Int J Biol Macromol 80:445–454

    CAS  Google Scholar 

  81. Shi W, Chang B, Yin H, Zhang S, Yang B, Dong X (2019) Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustain Energy Fuels 3(5):1201–1214

    CAS  Google Scholar 

  82. Shirai K, Guerreroa I, Huertaa S (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzym Microb Technol 28:446–452

    CAS  Google Scholar 

  83. Singaravelu DL, Ragh R, Vijay R, Manoharan S, Kchaou M (2019) Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications. Int J Automot Mech Eng 16(2):6502–6523

    Google Scholar 

  84. Son SY, Hong SA, Oh SY (2018) Crab-shell biotemplated SnO2 composite anodes for lithium-ion batteries. J Nanosci Nanotechnol 18:6463–6468

    CAS  Google Scholar 

  85. Sukumaran KK (1987) Squilla (Mantis shrimp) fishery of Karnataka state. R & D Ser Mar Fish Res Manag 18:1–3

    Google Scholar 

  86. Sye WF, Lu LC, Tai JW, Wang CI (2008) Applications of chitosan beads and porous crab shell powder combined with solid-phase microextraction for detection and the removal of color from textile wastewater. Carbohydr Polym 72:550–556

    CAS  Google Scholar 

  87. Tatsuya S, Takeshi K, Kazuya Y (2012) Facile production of chitin from crab shells using ionic liquid and citric acid. Int J Biol Macromol 50:861–864

    Google Scholar 

  88. Vijayalakshmi S, Ranjitha J (2017) Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel. Sustain Environ Res 27:273–278

    Google Scholar 

  89. Vijayaraghavan K, Balasubramanian R (2010) Single and binary biosorption of cerium and europium onto crab shell particles. Chem Eng J 163(3):337–343

    CAS  Google Scholar 

  90. Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour Technol 97(12):1411–1419

    CAS  Google Scholar 

  91. Vijayaraghavan K, Mahadevan A, Joshi UM, Balasubramanian R (2009) An examination of the uptake of lanthanum from aqueous solution by crab shell particles. Chem Eng J 152(1):116–121

    CAS  Google Scholar 

  92. Vilasoa-Martínez M, López-Hernández J, Asunción Lage-Yusty M (2007) Protein and amino acid contents in the crab, Chionoecetes opilio. Food Chem 103:1330–1336

    Google Scholar 

  93. Wang X, Yong H, Gao L, Li L, Jin M, Liu J (2019) Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll 89:56–66

    CAS  Google Scholar 

  94. Wilson OC, Gugssa A, Mehl PM, Anderson WA (2012) An initial assessment of the biocompatibility of crab shell for bone tissue engineering. Mater Sci Eng 32:78–82

    CAS  Google Scholar 

  95. Yan N, Chen X (2015) Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524(7564):155–158

    CAS  Google Scholar 

  96. Yang K, Wang G, Liu F, Wang X, Chen X (2019) Removal of multiple heavy metal ions using a macromolecule chelating flocculant xanthated chitosan. Water Sci Technol. https://doi.org/10.2166/wst.2019.230

    Google Scholar 

  97. Yao Z, Chen T, Li H (2013) Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. J Hazard Mater 262:212–217

    CAS  Google Scholar 

  98. Yao Z, Xia M, Ge L (2014a) Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers Polym 15(06):1278–1287

    CAS  Google Scholar 

  99. Yao Z, Xia M, Li H (2014b) Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Crit Rev Environ Sci Technol 44(22):2502–2530

    CAS  Google Scholar 

  100. Yao Z, Ge L, Ji X (2015a) Surface properties studies of bivalve shell waste by the IGC technique: probing its significant potential application in the polymer industry. J Alloys Compd 621:389–395

    CAS  Google Scholar 

  101. Yao Z, Ge L, Yang W (2015b) Finite dilution inverse gas chromatography as a versatile tool to determine the surface properties of biofillers for plastic composite applications. Anal Chem 87(13):6724–6729

    CAS  Google Scholar 

  102. Yao YY, Gedda G, Girma WM (2017a) Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl Mater Interfaces 9:13887–13899

    CAS  Google Scholar 

  103. Yao Z, Heng JYY, Lanceros-Méndez S (2017b) Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. Int J Adhes Adhes 77:58–62

    CAS  Google Scholar 

  104. Yao Z, Wu D, Heng JYY (2017c) Comparative study of surface properties determination of colored pearl-oyster-shell-derived filler using inverse gas chromatography method and contact angle measurements. Int J Adhes Adhes 78:55–59

    CAS  Google Scholar 

  105. Yao Z, Wu D, Heng JYY (2018) Surface characterization of bio-fillers from typical mollusk shell using computational algorithms. Int J Adhes Adhes 84:48–53

    CAS  Google Scholar 

  106. Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21

    CAS  Google Scholar 

  107. Zhou CQ, Gong XX, Han J, Guo R (2016) Removal of Pb(II) and Zn(II) from aqueous solutions by raw crab shell: a comparative study. Water Environ Res 88(4):374–383

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19B070008) and the National Natural Science Foundation of China (Grant Nos. 51911530460 and 51606055).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhitong Yao or Weihong Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, W., Yu, S., Wu, D. et al. A critical review of cast-off crab shell recycling from the perspective of functional and versatile biomaterials. Environ Sci Pollut Res 26, 31581–31591 (2019). https://doi.org/10.1007/s11356-019-06318-0

Download citation

Keywords

  • Crab shell
  • Biomaterial
  • Chitin and chitosan
  • Flocculant
  • Adsorbent