Skip to main content
Log in

Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Effect of arsenate [As(V)] on biomass, photosynthetic rate, stomatal conductance, transpiration, oxidative stress, accumulation of As, Fe, Zn, Cu and Mn and expression of NRAMP genes was investigated in As(V) tolerant and sensitive genotypes of bioenergy crop Ricinus communis. As(V) treatments (100 and 200 μM) led to significant reduction in root and leaf biomass, photosynthetic rate, stomatal conductance and transpiration in GCH 2 and GCH 4 genotypes but no significant change or increase was observed in WM and DCH 177 genotypes. No significant difference was observed in hydrogen peroxide content and lipid peroxidation in As(V)-treated tolerant genotypes compared to control, whereas these parameters enhanced significantly in As(V)-treated sensitive genotypes. GCH 2 accumulated around two times As in leaves and showed significant reduction in concentration of Zn and Mn in the leaves and roots due to 200 μM As(V) treatment compared to WM. NRAMP genes are critical for uptake and distribution of essential divalent metal cations, photosynthesis and controlled production of reactive oxygen species in plants. RcNRAMP2, RcNRAMP3 and RcNRAMP5 genes showed differential expression in response to 200 μM As(V) in GCH 2 and WM suggesting that NRAMP genes are associated with differential responses of WM and GCH 2 genotypes to As(V) stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott AJ (1967) Physiological effects of micronutrient deficiencies in isolated roots of Lycopersicum esculentum. New Phytol 66:419–437

    Article  Google Scholar 

  • Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Ricinus communis L to nickel. Int J Phytoremediation 14:481–492

    Article  CAS  Google Scholar 

  • Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, CorreiaD CL, Briat JF, Mari S, Curie C (2017) Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell 29:3068–3084

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  Google Scholar 

  • Asada K (2000) The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc London B Biol Sci 355:1419–1431

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L) and Brassica juncea (L) from the contaminated soil. Int J Phytoremediation 14:772–785

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Blasco B, Navarro-León E, Ruiz JM (2018) Oxidative stress in relation with micronutrient deficiency or toxicity. In: Plant Micronutrient Use Efficiency, Academic Press, London. pp 181-194

  • Cassol D, Cruz FP, Espindola K, Mangeon A, Müller C, Loureiro ME, Corrêa RL, Sachetto-Martins G (2016) Identification of reference genes for quantitative RT-PCR analysis of microRNAs and mRNAs in castor bean (Ricinus communis L.) under drought stress. Plant Physiol Biochem 106:101–107

    Article  CAS  Google Scholar 

  • Chen TB, Liu GL (1993) Effect of arsenic on rice (Oryza sativa L) growth and development and its mechanism. Sci Agric Sin 26:50–58

    CAS  Google Scholar 

  • de Souza Costa ET, Guilherme LRG, de Melo ÉEC, Ribeiro BT, Euzelina dos Santos BI, da Costa SE, Faquin V, Hale BA (2012) Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145:93–100

    Article  CAS  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289

    Article  CAS  Google Scholar 

  • Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  Google Scholar 

  • Gao H, Xie W, Yang C, Xu J, Li J, Wang H, Chen X, Huang C (2017) NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New Phytol 217:179–193

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  Google Scholar 

  • Hatch DJ, Jones LHP, Burau RG (1988) The effect of pH on the uptake of cadmium by four plant species grown in flowing solution culture. Plant Soil 105:121–126

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347:32.

  • Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038

    Article  CAS  Google Scholar 

  • Huang G, Jin Y, Zheng J, Kang W, Hu H, Liu Y, Zou T (2017) Accumulation and distribution of copper in castor bean (Ricinus communis L) callus cultures: in vitro. Plant Cell, Tissue Organ Cult 128:177–186

    Article  CAS  Google Scholar 

  • IARC (1979) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Some Halogenated Hydrocarbons 20:609

    Google Scholar 

  • Jha AB, Dubey RS (2004) Arsenic exposure alters activity behaviour of key nitrogen assimilatory enzymes in growing rice plants. Plant Growth Regul 43:259–268

    Article  CAS  Google Scholar 

  • Kang W, Bao J, Zheng J, Hu H, Du J (2015) Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture. Environ Sci Pollut Res 22:7726–7734

    Article  CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  CAS  Google Scholar 

  • Kiran BR, Prasad MNV (2017) Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. Euro Biotech J 1:101–116

    Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  Google Scholar 

  • Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Krämer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  CAS  Google Scholar 

  • Liu QJ, Sun XC, Hu CX, Tan QL (2009) Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition. Acta Ecol Sinica 29:854–859

    CAS  Google Scholar 

  • Luk EE, Culotta VC (2001) Manganese superoxide dismutase in S. cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276:47556–47562

    Article  CAS  Google Scholar 

  • Mahdieh S, Ghaderian SM, Karimi N (2013) Effect of arsenic on germination, photosynthesis and growth parameters of two winter wheat varieties. Iran J Plant Nutr 36:651–664

    Article  CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253

    Article  CAS  Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients micronutrients. In: Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London, pp 313–404

    Chapter  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Melo EEC, Costa ETS, Guilherme LRG, Faquin V, Nascimento CWA (2009) Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J Hazard Mater 168:479–483

    Article  CAS  Google Scholar 

  • Meriga B, Reddy BK, Jogeswar G, Reddy LA, Kishor PK (2003) Alleviating effect of citrate on aluminium toxicity of rice (Oryza sativa L.) seedlings. Curr Sci 85:383–386

    CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  CAS  Google Scholar 

  • Mishra S, Mattusch J, Wennrich R (2017) Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep 7:40522

    Article  CAS  Google Scholar 

  • Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–34

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by photosystem II. BBA-Bioenergetics 1787:1151–1160

    Article  CAS  Google Scholar 

  • Pospíšil P, Arató A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43:6783–6792

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MM, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Reed ST, Ayala-Silva T, Dunn CB, Gordon GG (2016) Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants. Agri Sci 6:1513–1531

    Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  Google Scholar 

  • Schröder WP, Åkerlund HE (1990) Hydrogen peroxide production in photosystem II preparations. In: Baltscheffsky, M. (Ed.), Current Research in Photosynthesis, Springer, Dordrecht, pp 901-904

  • Shaheenj R, Miah MAM, Rahman MS (2006) Response of common buckwheat and castor oil plant against different levels of soil arsenic concentration: a comparative study. Fagopyrum 23:45–51

    Google Scholar 

  • Shaibur MR, Kawai S (2010) Effect of arsenic on nutritional composition of Japanese mustard spinach: an ill effect of arsenic on nutritional quality of a green leafy vegetable. Nat Sci 8:186–194

    Google Scholar 

  • Shaibur MR, Kitajima N, Sugawara R, Kondo T, Huq SMI, Kawai S (2006) Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically. Soil Sci Plant Nutr 52:691–700

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037 26 pages

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2014) Arsenic toxicity and tolerance mechanisms in crop plants. In: Pessarakli M (ed) Handbook of Plant and Crop Physiology, 3rd edn. CRC Press, Taylor & Francis Publishing Company, Florida. ISBN 9781466553286, pp 733–782

    Google Scholar 

  • Sigfridsson KGV, Bernát G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with photosystem II. Biochim Biophys Acta (BBA)-Bioenergetics 1659:19–31

    Article  CAS  Google Scholar 

  • Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567

    Article  CAS  Google Scholar 

  • Taylaran RD, Adachi S, Ookawa T, Usuda H, Hirasawa T (2011) Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. J Exp Bot 62:4067–4077

    Article  CAS  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Vassilev A, Perez-Sanz A, Semane B, Carleer R, Vangronsveld J (2005) Cadmium accumulation and tolerance of two Salix genotypes hydroponically grown in presence of cadmium. J Plant Nutr 28:2159–2177

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang C, Na G, Bermejo ES, Chen Y, Banks JA, Salt DE, Zhao FJ (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206–218

    Article  CAS  Google Scholar 

  • Wang N, Qiu W, Dai J, Guo X, Lu Q, Wang T, Li S, Liu T, Zuo YM (2019) AhNRAMP1 enhances manganese and zinc uptake in plants. Front Plant Sci 10:415

    Article  Google Scholar 

  • Xu Y-F, Ookawa T, Ishihara K (1997) Analysis of the photosynthetic characteristics of the high-yielding rice cultivar Takanari. Japanese J Crop Sci 66:616–623

    Article  CAS  Google Scholar 

  • Yan XL, Lin LY, Liao XY, Zhang WB (2012) Arsenic accumulation and resistance mechanism in Panax notoginseng, a traditional rare medicinal herb. Chemosphere 87:31–36

    Article  CAS  Google Scholar 

  • Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K, Dong H, Wang D, Zhao F-J, Huang C-F (2014) OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J Exp Bot 65:4849–4861

    Article  CAS  Google Scholar 

  • Zhao F-J, Stroud JL, Khan MA, McGrath SP (2012) Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420

    Article  CAS  Google Scholar 

  • Zu YQ, Sun JJ, He YM, Wu J, Feng GQ, Li Y (2016) Effects of arsenic on growth, photosynthesis and some antioxidant parameters of Panax notoginseng growing in shaded conditions. Inter J Adv Agric Res 4:78–88

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Indian Institute of Oilseeds Research (IIOR), Hyderabad and Yugantar Bharati Analytical & Environmental Engineering Laboratory, Ranchi, for the determination of metal concentration using AAS. PS is thankful to DST-SERB project no. ECR/2016/000888 and UGC-Start-up grant no. F.4-5(107-FRP)/2014(BSR) for financial support. DBT Builder project no. BT/PR-9028/INF/22/193/2013 is greatly acknowledged. RS is thankful for CUJ University Fellowship during the period of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Sharma.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Jha, A.B., Misra, A.N. et al. Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress. Environ Sci Pollut Res 26, 31166–31177 (2019). https://doi.org/10.1007/s11356-019-06243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06243-2

Keywords

Navigation