Skip to main content

Optimisation, experimental validation and thermodynamic study of the sequential oil extraction and biodiesel production processes from seeds of Sterculia foetida

Abstract

Non-edible seeds are not used in any commercial applications, which implies that they can be used for biofuel applications. The present study aimed to maximise the process conditions for oil extraction and sterculia biodiesel production from Sterculia foetida (poon oil). GC-MS identified the methyl esters of sterculia oil as sterculic acid (32%), palmitic acid (15.88%), oleic acid (10.00%), linoleic acid (9.95%) and malvalic acid (9%). Response surface methodology (RSM) based parametric optimisation of oil extraction was carried out by choosing process variables such as sample weight, volume of solvent to seed ratio and time. The optimum sample amount of 7.5 g and the volume of solvent to seed ratio of 40 mL/g resulted in a maximum oil yield of 45.27% at 3 h. The results were statistically significant (P < 0.05) with a regression coefficient (R2) of 0.9988. Furthermore, the artificial neural network (ANN) resulted in an R2 value greater than 0.9, which validates the RSM. Conventional optimisation of the temperature (55 °C), feedstock to methanol ratio (1:12), catalyst proportion (1.5%) and transesterification reaction time (60 min) yield 90.87% biodiesel production. The physicochemical characteristics of oil and biodiesel complied with the requirements of the ASTM standards. The rate constant and thermodynamic variables at the optimum temperature (333 K) were calculated from the experimental data. The activation energy (Ea), activation enthalpy in transition state theory (ΔH++), activation entropy in transition state theory (ΔS++) and Gibbs free energy in transition state theory (ΔG++) were 37.91 kJ mol−1, 35.14 kJ mol−1, − 239.58 J mol−1 K−1 and 79.81 kJ mol−1 respectively.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

k :

Reaction rate constant (min−1)

A:

Arrhenius constant

E a :

Activation energy (kJ mol−1)

R :

Universal gas constant (J K−1 mol−1)

T :

Temperature in Kelvin (K)

N :

Avogadro’s constant (mol−1)

h :

Planck’s constant (J s)

ΔS :

Entropy change (mol−1 K−1)

ΔH :

Enthalpy change (J)

ΔG :

Gibb’s free energy (kJ mol−1)

ΔS ++ :

Activation entropy in transition state theory (kJ mol−1)

ΔH ++ :

Activation enthalpy in transition state theory (kJ mol−1)

ΔG ++ :

Gibbs free energy in transition state theory (kJ mol−1)

Yi:

Equilibrium constant

References

  • Atabani AE, da Silva CA (2014) Calophyllum inophyllum L.–A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew Sust Energ Rev 37:644–655

    CAS  Article  Google Scholar 

  • Atabani AE, Silitonga AS, Anjum BI, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070–2093

    Article  Google Scholar 

  • Atabani AE, Mahlia TMI, Masjuki HH, Badruddin IA, Yussof HW, Chong WT, Lee KT (2013) A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 58:296–304

    CAS  Article  Google Scholar 

  • Atabani AE, Badruddin IA, Badruddin A, Khayoon MS, Triwahyono S (2014) Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew Sust Energ Rev 3:840–851

    Google Scholar 

  • Balat M (2011) Potential alternatives to edible oils for biodiesel production- a review of current work. Energy Convers Manag 33:1646–1653

    Google Scholar 

  • Betiku E, Ajala SO (2014) Modelling and Optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogenous base catalyst: a case of artificial neural network vs. response surface methodology. Ind Crop Prod 53:314–322

    CAS  Article  Google Scholar 

  • Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK (2016) Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sust Energ Rev 55:1109–1128

    CAS  Article  Google Scholar 

  • Bisheswar K, Sumit HD, Gopinath H (2018) Optimization of biodiesel production from castor oil by Taguchi design. J Environ Chem Eng 6:2684–2695

    Article  CAS  Google Scholar 

  • Carvalho RHR, Galvao EL, Barros JAC, Conceição MM, Sousa EMBD (2012) Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum indicum L.). Braz J Chem Eng 29:409–420

    CAS  Article  Google Scholar 

  • Chen MJ, Chen KN, Lin CW (2005) Optimization on response surface models for the optimal manufacturing conditions of dairy tofu. J Food Eng 68:471–480

    Article  Google Scholar 

  • Devan PK, Mahalakshmi NV (2009a) Performance, emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine. Fuel 88:861–867

    CAS  Article  Google Scholar 

  • Devan PK, Mahalakshmi NV (2009b) Study of the performance, emission and combustion characteristics of a diesel engine using poon oil-based fuels. Fuel Process Technol 90:513–519

    CAS  Article  Google Scholar 

  • Dincer K (2008) Lower emissions from biodiesel combustion. Energy Sources 30:936–968

    Google Scholar 

  • Endalew AK, Kiros Y, Zanzi R (2011) Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 35:3787–3809

    CAS  Article  Google Scholar 

  • Galla NR, Pamidighantam PR, Akula S (2012) Chemical, amino acid and fatty acid composition of Sterculia urens L. seed. Food Hydrocoll 28:320–324

    CAS  Article  Google Scholar 

  • Giwa SO, Giwa A, Zeybek Z, Hapoglu H (2013) electrocoagulation treatment of petroleum refinery wastewater: optimization through RSM. Int J Eng Res Technol 2:606–615

    Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2011) Feasiblity of edible oil vs. non- edible oil vs. Waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Article  CAS  Google Scholar 

  • Hashim AB, Giwa SO, Ibrahim M, Giwa A (2015) Finding the optimum parameters for oil extraction from sesame seed using response surface methodology. Int J Sci Res Mgmt Stud 2:1–13

    Google Scholar 

  • Jamaluddin MA, Ismail K, Mohd Ishak MA, Ab Ghani Z, Abdullah MF, Safian MT, Idris SS, Tahiruddin S, Yunus MFM, Hakimi NINM (2013) Microwave-assisted pyrolysis of palm kernel shell: optimization using response surface methodology (RSM). Renew Energy 55:357–365

    CAS  Article  Google Scholar 

  • Kale SS, Darade V, Thakur HA (2011) Analysis of fixed oil from Sterculia foetida Linn. Int J Pharm Sci Res 2:2908–2914

    CAS  Google Scholar 

  • Kavitha MS, Murugavelh S (2019a) Optimization and transesterification of sterculia oil: assessment of engine performance, emission and combustion analysis. J Clean Prod 234:1192–1209. https://doi.org/10.1016/j.jclepro.2019.06.240

    CAS  Article  Google Scholar 

  • Kavitha MS, Murugavelh S (2019b) Biodiesel production from reactive extraction of Sterculia and waste cooking oil blend using an acid catalyst. Int J Ambient Energy 8:1–6

    Google Scholar 

  • Kumar D, Singh B, Banerjee A, Chatterjee S (2018) Cement wastes as transesterification catalysts for the production of biodiesel from Karanja oil. J Clean Prod 183:26–34

    CAS  Article  Google Scholar 

  • Kusumo F, Silitonga AS, Ong HC, Masjuki HH, Mahlia TMI (2017) A comparative study of ultrasound and infrared transesterification of Sterculia foetida oil for biodiesel production. Energy Sources, Part A 39:1339–1346

    CAS  Article  Google Scholar 

  • Lawson OS, Oyewumi A, Ologunagba FO, Ojomo AO (2010) Evaluation of the parameters affecting the solvent extraction of soybean Oil. J Eng Appl Sci 5:51–55

    Google Scholar 

  • Manohar B, Divakar S (2005) An artificial neural network analysis of porcine pancrease lipase catalysed esterification of athranilic acid with methanol. Process Biochem 40:3372–3376

    CAS  Article  Google Scholar 

  • Manurung R, Daniel L, van de Bovenkamp HH, Buntara T, Maemunah S, Kraai G, Makertihartha IGBN, Broekhuis AA, Heeres HJ (2012) Chemical modifications of Sterculia foetida L. oil to branched ester derivatives. Eur J Lipid Sci Technol 114:31–48

    CAS  Article  Google Scholar 

  • Mitra P, Ramaswamy HS, Chang KS (2009) Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of low free fatty acid crude palm oil. Food Chem 113:645–650

    Article  CAS  Google Scholar 

  • Muthukumaran C, Praniesh R, Navamani P, Swathi R, Sharmila G, Kumar N (2017) Process optimization and kinetic modelling of biodiesel production using non-edible Madhuca indica oil. Fuel 195:217–225

    CAS  Article  Google Scholar 

  • Okolie PN, Egbenni U, Ajekwene AE (2012) Extraction and quality evaluation of sandbox tree seed (Hura crepitan) oil. World J Agri Sci 8:359–365

    CAS  Google Scholar 

  • Oniya OO, Oyelade JO, Ogunkunle O, Idowu DO (2017) Optimization of solvent extraction of oil from sandbox kernels (Hura crepitan L.) by a Response Surface Method. Energ and Pol Res 4:36–43

    Article  Google Scholar 

  • Pandian S, Parthiban KS, Sivakumar P, Vinoba M, Renganathan S (2012) Optimization of extraction process and kinetics of Sterculia foetida Seed oil and its process augmentation for biodiesel production. Ind Eng Chem Res 51:8892–8898

    Google Scholar 

  • Pinheiro TF, Castro MPP, Perez VH, Junior EGS, Sthel MS, da Silva MG (2019) Environmental impact of combustion of ethanolic biodiesel/diesel blends from several feedstocks on the gas emission levels in the atmosphere. Environ Sci Pollut Res 1-10.

  • Rajendra M, Jena PC, Raheman H (2009) Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 88:868–875

    CAS  Article  Google Scholar 

  • Rashid U, Anuar F, Knothe G (2011) Biodiesel from Milo (Thespesia populnea L.) seed oil. Biomass Bioenergy 35:4034–4039

    CAS  Article  Google Scholar 

  • Sabria AP, Ghilardi Lago JH, Chaves MH, Kumagi EE (2004) Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St.Hil.Et Nauds seed oil. J Chromatogr A 1054:235–239

    Article  CAS  Google Scholar 

  • Sandhya KV, Abinandan S, Vedaraman N, Velappan KC (2016) Extraction of fleshing oil from waste limed fleshings and biodiesel production. Waste Manag 48:638–643

    CAS  Article  Google Scholar 

  • Sarin R, Sharma M, Sinharay S, Malhotra RK (2007) Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel 86:1365–1371

    CAS  Article  Google Scholar 

  • Silitonga AS, Ong HC, Masjuki HH, Mahlia TMI, Chong WT, Yusaf TF (2013) Production of biodiesel from Sterculia foetida and its process optimization. Fuel 114:478–484

    Article  CAS  Google Scholar 

  • Suganya T, Nagendra G, Renganathan S (2013) Production of algal biodiesel from marine macroalgae Enteromorpha compressa by two step process: optimization and kinetic study. Bioresour Technol 128:392–400

    CAS  Article  Google Scholar 

  • Sunil S, Sinha D, Murugavelh S (2016) Biodiesel production from waste cotton seed oil: engine performance and emission characteristics. Biofuels 6:689–698

    Google Scholar 

  • Timilsena YP, Vongsvivut J, Adhikari R, Adhikari B (2017) Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem 228:394–402

    CAS  Article  Google Scholar 

  • Venu H, Venkataraman D, Purushothaman P, Vallapudi DR (2019) Eichhornia crassipes biodiesel as a renewable green fuel for diesel engine applications: performance, combustion, and emission characteristics. Environ Sci Pollut Res 26:1–14

    Article  Google Scholar 

  • Vipunngeun N, Palanuvej C (2009) Fatty acids of Sterculia foetida seed oil. J Heal Res 23:157

    Google Scholar 

  • Živković S, Veljković M (2018) Environmental impacts the of production and use of biodiesel. Environ Sci Pollut Res 25:191–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavitha Muniswamy Sambasivam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sambasivam, K.M., Murugavelh, S. Optimisation, experimental validation and thermodynamic study of the sequential oil extraction and biodiesel production processes from seeds of Sterculia foetida. Environ Sci Pollut Res 26, 31301–31314 (2019). https://doi.org/10.1007/s11356-019-06214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06214-7

Keywords

  • Poon oil
  • Response surface methodology
  • Solvent extraction
  • Artificial neural network
  • Biodiesel optimisation
  • Kinetics
  • Activation energy
  • Enthalpy change