Skip to main content
Log in

Does the exposure of parental female adults of the invasive Trogoderma granarium Everts to pirimiphos-methyl on concrete affect the morphology of their adult progeny? A geometric morphometric approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Insecticidal applications may result to morphological deformations upon exposed insects or their offspring production. In the present study, we tested whether pirimiphos-methyl can induce deformities to wings of progeny production of the invasive khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae) when its parental female adults have been treated with this organophosphorus active ingredient. For that purpose, we analysed both elytra and hindwings of both sexes of T. granarium progeny production by using the geometric morphometrics method. Our results showed that the wings of progeny of the pirimiphos-methyl-treated T. granarium parental female adult individuals suffered certain changes in their usual shape depending on size. Deformations occurred on both pairs of wings, but changes were more noticeable on the hindwings. A longer than 5-h exposure of parental female adults to pirimiphos-methyl, resulted in progeny with more deformed wings than in those individuals emerged after the exposure of their parental female adults in shorter periods on the toxicant. Generally, wings of both sexes were sensitive to pirimiphos-methyl, distinguishing the control group from the insecticidal treatments. The existence of deformed adults could be a useful indicator of earlier insecticidal applications as surface treatments and/or grain protectants in the storage facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler D, Murdoch D, Nenadic O, Urbanec S, Chen M, Gebhardt A, Bolker B, Csardi G, Strzelecki A, Senger A, Eddelbettel D (2019) rgl: 3D visualization using OpenGL. Version 0.100.24. https://r-forge.r-project.org/projects/rgl. Accessed 04 July 2019

  • Alibert P, Moureau B, Dommergues JL, David B (2001) Differentiation at a micrographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera: Carabidae): a geometrical morphometric approach. Zool Scr 30:299–311

    Google Scholar 

  • Arthur FH (2001) Susceptibility of last instar red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae) to hydroprene. J Econ Entomol 94:772–779

    CAS  Google Scholar 

  • Arthur FH (2015) Food source effect and residual efficacy of chlorfenapyr as a surface treatment on sealed and unsealed concrete. J Stored Prod Res 64:65–71

    Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Boukouvala MC, Mavroforos ME, Kontodimas DC (2015) Efficacy of alpha-cypermethrin and thiamethoxam against Trogoderma granarium Everts (Coleoptera: Dermestidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) on concrete. J Stored Prod Res 62:101–107

    Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Boukouvala MC (2016) Population growth of the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on different commodities. J Stored Prod Res 69:72–77

    Google Scholar 

  • Bai M, Ahrens D, Yang XK, Ren D (2012a) New fossil evidence of the early diversification of scarabs: Alloioscarabaeus cheni (Coleoptera: Scarabaeoidea) from the Middle Jurassic of Inner Mongolia, China. Insect Sci 19:159–171

    CAS  Google Scholar 

  • Bai M, Beutel RG, Song KQ, Liu WG, Malqin H, Li S, Hu XY, Yang XK (2012b) Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Struct Dev 41:505–513

    Google Scholar 

  • Bai M, Beutel RG, Shih CK, Ren D, Yang XK (2013) Septiventeridae, a new and ancestral fossil family of Scarabaeoidea (Insecta: Coleoptera) from the Late Jurassic to Early Cretaceous Yixian Formation. J Syst Palaeontol 11:359–374

    Google Scholar 

  • Bellamy CL, Nelson GH (2002) Buprestidae Leach 1815. In: Arnett RH Jr, Thomas MC, Skelley PE, Frank JH (eds) American beetles. Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, Boca Raton, pp 127–132

    Google Scholar 

  • Benítez HA, Lemic D, Bažok R, Gallardo Araya CM, Mikac KM (2014a) Evolutionary directional asymmetry and shape variation in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae): an example using hind wings. Biol J Linn Soc 111:110–118

    Google Scholar 

  • Benítez HA, Lemic D, Bažok R, Bravi R, Buketa M, Püschel T (2014b) Morphological integration and modularity in Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) hind wings. Zool Anz 253:461–468

    Google Scholar 

  • Bologna MA, Pinto JD (2002) The old world genera of Meloidae (Coleoptera): a key and synopsis. J Nat Hist 36:2013–2102

    Google Scholar 

  • Combes SA, Daniel TL (2003) Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997

    CAS  Google Scholar 

  • Dong J, Wang K, Li Y, Wang S (2017) Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). Pestic Biochem Physiol 136:58–63

    CAS  Google Scholar 

  • Dryden IL, Mardia KM (2016) Statistical shape analysis, 2nd edn. Wiley, Chichester

    Google Scholar 

  • EPPO (European and Mediterranean Plant Protection Organization) (2013) Diagnostics. PM 7/13 (2). Trogoderma granarium. EPPO Bull 43:431–448

    Google Scholar 

  • EPPO (European and Mediterranean Plant Protection Organization) (2019) EPPO global data base. Trogoderma granarium. https://gd.epp.int/taxon/TOGGA. Accessed 19 Feb 2019

  • Forbes WTM (1922) The wing-venation of the Coleoptera. Ann Entomol Soc Am 15:328–345

    Google Scholar 

  • Frantsevich L, Dai Z, Wang WY, Zhang Y (2005) Geometry of elytra opening and closing in some beetles (Coleoptera: Polyphaga). J Exp Biol 208:3145–3158

    Google Scholar 

  • Haas F (2006) Evidence from folding and functional lines of wings on inter-ordinal relationships in Pterygota. Arthropod Syst Phylo 64:149–158

    Google Scholar 

  • Han W, Zhang S, Shen F, Liu M, Ren C, Gao X (2012) Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 68:1184–1190

    CAS  Google Scholar 

  • Hill DS (2003) Pests of storage foodstuffs and their control. Kluwer Academic Publishers, New York

    Google Scholar 

  • Imura Y, Tominaga O, Su ZH, Kashiwai N, Okamoto M, Osawa S (2018) Evolutionary history of carabid ground beetles with special reference to morphological variations of the hind-wings. Proc Jpn Acad Ser B 94:360–371

    Google Scholar 

  • Joshi AKR, Rajini PS (2012) Organophosphorus insecticides and glucose homeostasis. In: Perveen FK (ed) Insecticides. Pest Engineering. Intech, Rijeka, pp 63–84

    Google Scholar 

  • Kamaruzzaman AHM, Reza AMS, Mondal KAMSH, Parween S (2006) Morphological abnormalities in Tribolium castaneum (Herbst) and Tribolium confusum Duval due to cyromazine and pirimiphos-methyl treatments alone or in combination. Invertebr Surviv J 3:97–102

    Google Scholar 

  • Karnavar GK (1973) Effects of synthetic juvenile hormone on diapaused and metamorphosis of a stored grain pest Trogoderma granarium. Indian J Exp Biol 11:138–140

    CAS  Google Scholar 

  • Katovich K (2002) Heteroceridae MacLeay 1825. In: Arnett RH Jr, Thomas MC, Skelley PE, Frank JH (eds) American beetles. Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, Boca Raton, pp 98–112

    Google Scholar 

  • Kavallieratos NG, Boukouvala MC (2018) Efficacy of four insecticides on different types of storage bags for the management of Trogoderma granarium Everts (Coleoptera: Dermastidae) adults and larvae. J Stored Prod Res 78:50–58

    Google Scholar 

  • Kavallieratos NG, Athanassiou CG, Guedes RNC, Drempela JD, Boukouvala MC (2017) Invader competition with local competitors: displacement or co-existence among the invasive khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and two other major stored-grain beetles? Front Plant Sci 8:1837

    Google Scholar 

  • Khan GZ, Khan I, Khan IA, Alamzeb SM, Ullah K (2016) Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac J Trop Biomed 6:485–491

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Google Scholar 

  • Krantz GW (1978) A manual of Acarology, 2nd edn. Oregon State University Book Stores, Corvallis

    Google Scholar 

  • Le TQ, Truong TV, Park SH, Truong TQ, Ko JH, Park HC, Byun D (2013) Improvement of the aerodynamic performance by wing flexibility and elytra-hind wing interaction of a beetle during forward flight. J R Soc Interface 10:20130312

    Google Scholar 

  • Lemic D, Benítez HA, Bažok R (2014) Intercontinental effect on sexual shape dimorphism and allometric relationships in the beetle pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). Zool Anz 253:203–206

    Google Scholar 

  • Li L, Qi Y, Yang Y, Bai M (2016) A new species of Falsopodabrus Pic characterized with geometric morphometrics (Coleoptera: Cantharidae). ZooKeys 614:97–112

    Google Scholar 

  • Lindgren DL, Vincent LE, Krohne HE (1955) The khapra beetle, Trogoderma granarium Everts. Hilgardia 24:1–36

    Google Scholar 

  • Liu D, Jia ZQ, Peng YC, Sheng CW, Tang T, Xu L, Han ZJ, Zhao CQ (2018) Toxicity and sublethal effects of fluralaner on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Pestic Biochem Physiol 152:8–16

    CAS  Google Scholar 

  • Lowe S, Brone M, Boudjelas S, De Poorter M (2000) 100 of the world's worst invasive alien species. A selection from the global invasive species database. Hollands Printing Ltd, Auckland

    Google Scholar 

  • Lü ZC, Wan FH (2011) Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). J Exp Biol 214:764–769

    Google Scholar 

  • Luk SPL, Marshall SA, Branham MA (2011) The fireflies of Ontario (Coleoptera: Lampyridae). Can J Arthropod Identif 16

  • Meresman Y, Ribak G (2017) Allometry of wing twist and camber in a flower chafer during free flight: how do wing deformations scale with body size? R Soc Open Sci 4:171152

    Google Scholar 

  • Mohandass SM, Arthur FH, Zhu KY, Throne JE (2006) Hydroprene: mode of action, current status in stored-product pest management, insect resistance, and future prospects. Crop Prot 25:902–909

    CAS  Google Scholar 

  • Mondal KAMSH, Parween S (2000) Insect growth regulators and their potential in the management of stored-product insect pests. Integr Pest Manag Rev 5:255–295

    Google Scholar 

  • Myers SW, Hagstrum DW (2012) Quarantine. In: Hagstrum DW, Phillips TW, Cuperus G (eds) Stored product protection. Kansas State University, Manhattan, pp 297–304

    Google Scholar 

  • Partida GJ, Archer TL, Strong RG (1969) A method of sexing Trogoderma (Coleoptera: Dermestidae) pupae. J Econ Entomol 62:1186–1189

    Google Scholar 

  • Peacock ER (1993) Adults and larvae of hide, larder and carpet beetles and their relatives (Coleoptera: Dermestidae) and of derodontid beetles (Coleoptera: Derodontidae). St Edmundsbury Press, Suffolk

    Google Scholar 

  • Pizzo A, Mercurio D, Palestrini C, Roggero A, Rolando A (2006) Male differentiation patterns in two polyphenic sister species of the genus Onthophagus Latreille, 1802 (Coleoptera: Scarabaeidae): a geometric morphometric approach. J Zool Syst Evol Res 44:54–62

    Google Scholar 

  • Plarre R (2010) An attempt to reconstruct the natural and cultural history of the granary weevil, Sitophilus granarius (Coleoptera: Curculionidae). Eur J Entomol 107:1–11

    Google Scholar 

  • Pretorius R, Philips K, Scholtz CH (2000) Geometric morphometrics, the metendosternite and its use in phylogenetics of the Scarabaeinae (Coleoptera). Elytron 14:125–148

    Google Scholar 

  • Rajak P, Roy S (2018) Heat shock proteins and pesticide stress. In: Asea AA, Kaur P (eds) Regulation of heat shock protein responses. Springer, Cham, pp 27–40

    Google Scholar 

  • Rodríguez Enríquez CL, Pineda S, Figueroa JI, Schneider MI, Martínez AM (2010) Toxicity and sublethal effects of methoxyfenozide on Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 103:662–667

    Google Scholar 

  • Rohlf FJ (2005) tpsDig 2.05: digitize landmarks and outlines. State University of New York, Stony Brook

    Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59

    Google Scholar 

  • Rossa R, Goczał J, Pawliczek B, Ohbayashi N (2017) Hind wing variation in Leptura annularis complex among European and Asiatic populations (Coleoptera: Cerambycidae). ZooKeys 724:31–42

    Google Scholar 

  • RStudio Team (2015) RStudio: integrated development environment for R. RStudio Inc, Boston

    Google Scholar 

  • Rup PJ, Chopra PK (1984) Effect of hydroprene on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 20:229–232

    CAS  Google Scholar 

  • Sheets HD (2006) IPM Software. Canisius College, Buffalo

    Google Scholar 

  • StatSoft Inc (2004) Statistica 7.0. Data analysis software system. StatSoft, Tulsa

    Google Scholar 

  • Tang L, Zhao YL, Puthz V (2009) Brachypterous Stenus species (Coleoptera: Staphylinidae: Steninae) from west-central China. Entomol Fenn 20:191–199

    Google Scholar 

  • Uggini GK, Patel PV, Balakrishnan S (2012) Embryotoxic and teratogenic effects of pesticides in chick embryos: a comparative study using two commercial formulations. Environ Toxicol 27:166–174

    CAS  Google Scholar 

  • Williams CM, Amos TG (1974) Some effects of synthetic juvenile hormones and hormone analogues on Tribolium castaneum (Herbst). Aust J Zool 22:147–153

    CAS  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer, 2nd edn. Academic, London

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Grant Number III43001 and the Special Account for Research Funds of the Agricultural University of Athens (project 34.0401).).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolas G. Kavallieratos.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(HTML 368 kb)

ESM 2

(HTML 366 kb)

ESM 3

(HTML 352 kb)

ESM 4

(HTML 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarević, M., Kavallieratos, N.G., Nika, E.P. et al. Does the exposure of parental female adults of the invasive Trogoderma granarium Everts to pirimiphos-methyl on concrete affect the morphology of their adult progeny? A geometric morphometric approach. Environ Sci Pollut Res 26, 35061–35070 (2019). https://doi.org/10.1007/s11356-019-06120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06120-y

Keywords

Navigation