Basu S, Gaur R, Gomes J, Sreekrishnan TR, Bisaria VS (2002) Effect of seed culture on solid state bioconversion of wheat straw by Phanerochaete chrysosporium for animal feed production. Biosci Bioeng 93(1):25–30. https://doi.org/10.1016/s1389-1723(02)80049-4
CAS
Article
Google Scholar
Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003
CAS
Article
Google Scholar
Clare A, Shackley S, Joseph S, Hammond J, Pan G, Bloom A (2014) Competing uses for China’s straw: the economic and carbon abatement potential of biochar. GCB Bioenergy 7(6):1272–1282. https://doi.org/10.1111/gcbb.12220
CAS
Article
Google Scholar
Clariza-Samayoa A, Chen WT, Hwang SY (2016) Survival and development of Hermetia illucens (Diptera: Stratiomyidae): a biodegradation agent of organic waste. J Econ Entomol 109(6):2580–2585. https://doi.org/10.1093/jee/tow201
Article
Google Scholar
David JS, Gene AS, Royce JT (1999) Response of lactating dairy cows to a cellulase and xylanase enzyme mixture applied to forages at the time of feeding. J Dairy Sci 82(5):996–1003. https://doi.org/10.3168/jds.s0022-0302(99)75319-1
Article
Google Scholar
Elsayed M, Abomohra AEF, Ai P, Wang DL, El-Mashad H, Zhang YL (2018) Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: comparison of structural properties and energy output. Bioresour Technol 268:183–189. https://doi.org/10.1016/j.biortech.2018.07.130
CAS
Article
Google Scholar
Ghorbani F, Karimi M, Biria D, Kariminia HR, Jeihanipour A (2015) Enhancement of fungal delignification of rice straw by Trichoderma viride sp. to improve its saccharification. Biochem Eng J 101:77–84. https://doi.org/10.1016/j.bej.2015.05.005
CAS
Article
Google Scholar
Hall HN, Masey O'Neill HV, Scholey D, Burton E, Dickinson M, Fitches EC (2018) Amino acid digestibility of larval meal (Musca domestica) for broiler chickens. Poult Sci 97(4):1290–1297. https://doi.org/10.3382/ps/pex433
CAS
Article
Google Scholar
Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–189. https://doi.org/10.1094/PHYTO-96-0186
CAS
Article
Google Scholar
Hu ZH, Yue ZB, Yu HQ, Liu SY, Harada H, Li YY (2012) Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms. Appl Energy 93:229–236. https://doi.org/10.1016/j.apenergy.2011.12.015
CAS
Article
Google Scholar
Hussein M, Pillai VV, Goddard JM, Park HG, Kothapalli KS, Ross DA et al (2017) Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS One 12(2):e0171708. https://doi.org/10.1371/journal.pone.0171708
CAS
Article
Google Scholar
Ji YB, Alaerts G, Xu CJ, Hu YZ, Vander Heyden Y (2006) Sequential uniform designs for fingerprints development of Ginkgo biloba extracts by capillary electrophoresis. J Chromatogr A 1128(1-2):273–281. https://doi.org/10.1016/j.chroma.2006.06.053
CAS
Article
Google Scholar
Karnaouri A, Matsakas L, Topakas E, Rova U, Christakopoulos P (2016) Development of thermophilic tailor-made enzyme mixtures for the bioconversion of agricultural and forest residues. Front Microbiol 7:177. https://doi.org/10.3389/fmicb.2016.00177
Article
Google Scholar
Kasprzycka A, Lalak-Kańczugowska J, Tys J (2018) Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and methane production. Bioresour Technol 263:660–664. https://doi.org/10.1016/j.biortech.2018.05.024
CAS
Article
Google Scholar
Li W, Li MS, Zheng L, Liu YS, Zhang YL, Yu ZN et al (2015) Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol Biofuels 8:117. https://doi.org/10.1186/s13068-015-0306-z
CAS
Article
Google Scholar
Li L, Xie B, Dong C, Hu D, Wang M, Liu G, Liu H et al (2015b) Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the “Lunar Palace 1” during a 105-day multi-crew closed integrative BLSS experiment. Life Sci Space Res 7:9–14. https://doi.org/10.1016/j.lssr.2015.08.002
Article
Google Scholar
Li H, Cao Y, Wang XM, Ge X, Li BQ, Jin CQ (2017a) Evaluation on the production of food crop straw in China from 2006 to 2014. BioEnergy Res 10:949–957. https://doi.org/10.1007/s12155-017-9845-4
Article
Google Scholar
Li ZH, Qi XW, Liu Y, Chen ZZ, Niu CY (2017b) Effect of corn straw fermentation by Bacillus subtilis on rearing Musca domestica (Diptera: Muscidae). Biotic Resour 39(6):448–454 (in Chinese)
Google Scholar
Liu Y, Qi XW, Li ZH, Niu CY (2017) Effects of three fermented crop straws on mass rearing of Musca domestica (Diptera: Muscidae). J Huazhong Agric Univ 36(1):55–60 (in Chinese)
Google Scholar
Mao HL, Mao HL, Wang JK, Liu JX, Yoon I (2013) Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J Anim Sci 91:3291–3298. https://doi.org/10.2527/jas.2012-5851
CAS
Article
Google Scholar
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M et al (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108. https://doi.org/10.3389/fpls.2012.00108
Article
Google Scholar
Monlau F, Barakat A, Trably E, Dumas C, Steyer JP, Carrère H (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43(3):260–322. https://doi.org/10.1080/10643389.2011.604258
CAS
Article
Google Scholar
Montowska M, Kowalczewski PŁ, Rybicka I, Fornal E (2019) Nutritional value, protein and peptide composition of edible cricket powders. Food Chem 289:130–138. https://doi.org/10.1016/j.foodchem.2019.03.062
CAS
Article
Google Scholar
Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI, Tedders WL (2011) Self-selection of two diet components by Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and its impact on fitness. Environ Entomol 40:1285–1294. https://doi.org/10.1603/EN10239
CAS
Article
Google Scholar
Nazari M, Mehrabi T, Hosseini SM, Alikhani MY (2017) Bacterial contamination of adult house flies (Musca domestica) and sensitivity of these bacteria to various antibiotics, captured from Hamadan City, Iran. J Clin Diagn Res 11(4):04–07. https://doi.org/10.7860/JCDR/2017/23939.9720
Article
Google Scholar
Ogunji JO, Kloas W, Wirth M, Neumann N, Pietsch C (2008) Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J Anim Physiol Anim Nutr 92(4):511–518. https://doi.org/10.1111/j.1439-0396.2007.00745
CAS
Article
Google Scholar
Oonincx DGAB, van Broekhoven S, van Huis A, van Loon JJA (2015) Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS One 10:e0144601. https://doi.org/10.1371/journal.pone.0144601
Article
Google Scholar
Pakora GA, Mpika J, Kone D, Ducamp M, Kebe I, Nay B, Buisson D (2017) Inhibition of Phytophthora species, agents of cocoa black pod disease, by secondary metabolites of Trichoderma species. Environ Sci Pollut Res 25(30):29901–29909. https://doi.org/10.1007/s11356-017-0283-9
Article
Google Scholar
Pan JS, Hong MZ, Zhou QF, Cai JY, Wang HZ, Luo LK et al (2009) Integrated application of uniform design and least-squares support vector machines to transfection optimization. BMC Biotechnol 9(1):52. https://doi.org/10.1186/1472-6750-9-52
CAS
Article
Google Scholar
Peitersen N (1975) Cellulase and protein production from mixed cultures of Trichoderma viride and a yeast. Biotechnol Bioeng 17(9):1291–1299. https://doi.org/10.1002/bit.260170904
CAS
Article
Google Scholar
Peng LC, Hocart CH, Redmond JW, Williamson RE (2000) Fractionation of carbohydrates in arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211(3):406–414. https://doi.org/10.1007/s004250000301
CAS
Article
Google Scholar
Rehman KU, Cai MM, Xiao XP, Zheng LY, Wang H, Soomro AA et al (2017) Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). J Environ Manag 196:458–465. https://doi.org/10.1016/j.jenvman.2017.03.047
CAS
Article
Google Scholar
Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831. https://doi.org/10.1007/s10532-010-9408-2
CAS
Article
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D et al (2008) Determination of structural carbohydrates and lignin in biomass. Tech Rep NREL/TP-510-42618, NREL, Golden Co
Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B et al (2016) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric 97(8):2594–2600. https://doi.org/10.1002/jsfa.8081
CAS
Article
Google Scholar
van Huis A, Joost VI, Harmke K, Harmke K, Esther M, Afton H et al (2013) Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the united nations (FAO), Rome
Google Scholar
van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33:191–202. https://doi.org/10.1016/j.biotechadv.2014.10.014
CAS
Article
Google Scholar
Villas-Boas SG, Esposito E, Mitchell DA (2002) Microbial conversion of lignocellulosic residues for production of animal feeds. Anim Feed Sci Technol 98(1-2):1–12. https://doi.org/10.1016/s0377-8401(02)00017-2
CAS
Article
Google Scholar
Wagner AO, Schwarzenauer T, Illmer P (2013) Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. J Environ Manag 129:357–360. https://doi.org/10.1016/j.jenvman.2013.07.030
CAS
Article
Google Scholar
Wang C, Xiong X, Li T, Zhang X, Li N (2015) Fermented crop straw feed Tenebrio molitor. Feed Res 11:66–69 (in Chinese)
Google Scholar
Wang JY, Xi FM, Liu Z, Bing LF, Alsaedi A, Hayat T et al (2018a) The spatiotemporal features of greenhouse gases emissions from biomass burning in China from 2000 to 2012. J Clean Prod 108:801–808. https://doi.org/10.1016/j.jclepro.2018.01.206
CAS
Article
Google Scholar
Wang S, Luo L, Ding Y, Zhang D (2018b) Effects of agricultural straws on the development and the content of trehalose of Tenebrio molitor. J Environ Entomol 40(1):52–57 (in Chinese)
Google Scholar
Wang X, Xu SJ, Wu SH, Feng SG, Bai ZH, Zhuang GQ et al (2018c) Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China. J Environ Sci 66:199–207. https://doi.org/10.1016/j.jes.2017.05.016
Article
Google Scholar
Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632. https://doi.org/10.1146/annurev-ento-112408-085319
CAS
Article
Google Scholar
Wu SQ, Cai ZZ, Niu Y, Zheng D, He GR, Wang Y et al (2017) A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva. Renew Energy 113:546–553. https://doi.org/10.1016/j.renene.2017.05.094
CAS
Article
Google Scholar
Xu XQ, Xu ZQ, Shi S, Lin MM (2017) Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresour Technol 241:415–423. https://doi.org/10.1016/j.biortech.2017.05.087
CAS
Article
Google Scholar
Yang C, Liu Y, Xu X, Zhao L (2015a) The study on the effect of Protaetia brevitaris Lewis larvae transformation the corn straw. J Environ Entomol 37(1):122–127 (in Chinese)
Google Scholar
Yang S, Xie J, Hu N, Liu Y, Zhang J, Ye X et al (2015b) Bioconversion of gibberellin Fermentation residue into feed supplement and organic fertilizer employing housefly (Musca domestica L.) assisted by Corynebacterium variabile. PLoS One 10(5):e0110809. https://doi.org/10.1371/journal.pone.0110809
CAS
Article
Google Scholar
Zahoor TY, Wang L, Xia T, Sun D, Zhou S et al (2017) Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresour Technol 243:319–326. https://doi.org/10.1016/j.biortech.2017.06.111
CAS
Article
Google Scholar
Zeng XY, Ma YT, Ma LR (2007) Utilization of straw in biomass energy in China. Renew Sust Energ Rev 11:976–987. https://doi.org/10.1016/j.rser.2005.10.003
CAS
Article
Google Scholar
Zhao L, Meng S, Shi Z, Zhang L, Han D, Liu H et al (2015) Optimization of liquid fermentation for cellulase production by Trichoderma viride. Acta Agriculturae Zhejiangensis 27(3):442–447 (in Chinese)
Google Scholar
Zhao Y, Wang WQ, Zhu F, Wang X, Wang XY, Lei CL (2017) The gut microbiota in larvae of the housefly Musca domestica and their horizontal transfer through feeding. AMB Express 7:147. https://doi.org/10.1186/s13568-017-0445-7
CAS
Article
Google Scholar
Zhao SG, Li GD, Zheng N, Wang JQ, Yu ZT (2018) Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresour Technol 253:244–251. https://doi.org/10.1016/j.biortech.2018.01.024
CAS
Article
Google Scholar
Zurek L, Schal C, Watson DW (2000) Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. J Med Entomol 37(6):924–928. https://doi.org/10.1603/0022-2585-37.6.924
CAS
Article
Google Scholar