Skip to main content
Log in

Evaluation of the bioremediation potential of mud polychaete Marphysa sp. in aquaculture pond sediments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organic enrichment from aquaculture could alter the chemical composition of the fishpond bottom by increasing the levels of organic matter (OM), sulfur (S), iron (Fe), and lower pH of the sediment. Polychaetes can contribute to the nutrient cycling and remediation of polluted sediment. A laboratory experiment was conducted to test the remediation potential of small and large mud polychaete Marphysa sp. introduced to two types of fishpond sediment. Initially, Sediment A had lower OM, S, Fe, and higher pH than Sediment B. After 30 days, in Sediment B, large polychaetes significantly decreased the OM level (27%) while both small and large polychaetes promoted significant decreases of S (71%) and Fe (70–73%) in both sediment types. The increase of sediment pH was promoted by the presence of polychaetes (0.53–0.69) although pH level in small polychaete was not significantly different with the no polychaete treatment. Regardless of polychaete treatment, the pH level of Sediment B (1.04 ± 0.10) was significantly improved than that of Sediment A (0.17 ± 0.02). In both sediments, large polychaetes (95%) had better survival rates than small polychaetes (73%). These findings reveal that large Marphysa sp. can significantly improve sediment quality by decreasing the levels of OM, S, and Fe and improve pH level to a more basic form without compromising its survival. Large polychaetes are recommended to be used as bioremediators of organically enriched aquaculture pond sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Ackefors H, Enell M (1994) The release of nutrients and organic matter from aquaculture systems in Nordic countries. J Appl Ichthyol 10(4):225–241

    Article  CAS  Google Scholar 

  • Alava VR, Biñas JB, Mandario MAE (2015) Development of techniques for sustainable production of marine annelids as feed for broodstock crab Scylla serrata. Program A. Project 1. Refinement of Mud Crab Hatchery Techniques. Department of Science and Technology (DOST) – Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAANRRD) - SEAFDEC/AQD. 94 pp

  • AOAC (2000) Official methods of analysis. 17th edition. The Association of Official Analytical Chemists, Gaithersburg, MD, USA. Methods 925. 10, 65.17, 974.24, 992.16.

  • Axler R, Larsen C, Tikkanen C, McDonald M, Yokom S, Aas P (1996) Water quality issues associated with aquaculture: a case study in mine pit lakes. Water Environ Res 68(6):995–1011

    Article  CAS  Google Scholar 

  • Belzunce-Segarra MJ, Simpson SL, Amato ED, Spadaro DA, Hamilton IL, Jarolimek CV, Jolley DF (2015) The mismatch between bioaccumulation in field and laboratory environments: interpreting the differences for metals in benthic bivalves. Environ Pollut 204:48–57

    Article  CAS  Google Scholar 

  • Boyd CE, Wood CW, Thunjai T (2002) Aquaculture pond bottom soil quality management. Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon State University

  • Brown N, Eddy S, Plaud S (2011) Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture 322:177–183

    Article  Google Scholar 

  • Brune DE, Schwartz G, Eversole AG, Collier JA, Schwedler TE (2003) Intensification of pond aquaculture and high rate photosynthetic systems. Aquac Eng 28(1):65–86

    Article  Google Scholar 

  • Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133

    Article  Google Scholar 

  • Ciutat A, Boudou A (2003) Bioturbation effects on cadmium and zinc transfers from a contaminated sediment and on metal bioavailability to benthic bivalves. Environ Toxicol Chem 22(7):1574–1581

    Article  CAS  Google Scholar 

  • Coman GJ, Arnold SJ, Callaghan TR, Preston NP (2007) Effect of two maturation diet combinations on reproductive performance of domesticated Penaeus monodon. Aquaculture 263:75–83

    Article  Google Scholar 

  • Durborow RM, Crosby DM, Brunson MW (1997) Nitrite in fish ponds, fact sheet No. 462, Southern Regional Aquaculture Center

  • Ekpo BO, Ita OE, Offem JO, Adie PA (2012) Anthropogenic PAHs in sediment-dwelling biota from mangrove areas of the Calabar River, SE Niger Delta, Nigeria. Environ Nat Resour Res 2(4):89

    Google Scholar 

  • Engel M, Behnke A, Klier J, Buschbaum C, Volkenborn N, Stoeck T (2012) Effects of the bioturbating lugworm Arenicola marina on the structure of benthic protistan communities. Mar Ecol Prog Ser 471:87–99

    Article  Google Scholar 

  • Engle CR, Valderrama D (2003) Farm-level costs of settling basins for treatment of effluents from levee-style catfish ponds. Aquac Eng 28(3):171–199

    Article  Google Scholar 

  • Faulwetter S, Markantonatou V, Pavloudi C, Papageorgiou N, Keklikoglou K, Chatzinikolaou E, Pafilis E, Chatzigeorgiou G, Vasileiadou K, Dailianis T (2014) Polytraits: a database on biological traits of marine polychaetes. Biodivers Data J 2:1024

    Article  Google Scholar 

  • Fortes NR, Pahila IG (1992) Manual of soil and water chemical analyses for brackishwater ponds. Leganes, Iloilo, Brackishwater Aquaculture Center, College of Fisheries, U.P. in the Visayas. 121 p

  • Fruzińska R (2011) Accumulation of iron in the soil-plant system in a metal industry area. Civil Environ Eng Reports 7:59–68

  • Golez NV (2000) Practical Guide for Soil and Water Analysis. Presented at the 3rd country training programme on responsible aquaculture development

  • Gómez S, Hurtado CF, Orellana J (2019) Bioremediation of organic sludge from a marine recirculating aquaculture system using the polychaete Abarenicola pusilla (Quatrefages, 1866). Aquaculture 507:377–384

    Article  CAS  Google Scholar 

  • Gowen RJ, Bradbury NB (1987) The ecological impact of salmonid farming in coastal waters: a review. Oceanogr Mar Biol 25:563–575

    Google Scholar 

  • Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60(1):33–53

    Article  CAS  Google Scholar 

  • Haimi J (2000) Decomposer animals and bioremediation of soils. Environ Pollut 107:233–238

    Article  CAS  Google Scholar 

  • Hargrave BT, Holmer M, Newcombe CP (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar Pollut Bull 56:810–824

    Article  CAS  Google Scholar 

  • Heilskov AC, Holmer M (2003) Influence of benthic fauna on organic matter decomposition in organic-enriched fish farm sediments. Life Environ 53:53–161

    Google Scholar 

  • Heilskov AC, Alperin M, Holmer M (2006) Benthic fauna bio-irrigation effects on nutrient regeneration in fish farm sediments. J Exp Mar Biol Ecol 339(2):204–225

    Article  Google Scholar 

  • Holmer M, Duarte CM, Heilskov A, Olesen B, Terrados J (2003) Biogeochemical conditions in sediments enriched by organic matter from net-pen fish farms in the Bolinao area, Philippines. Mar Pollut Bull 46:1470–1479

    Article  CAS  Google Scholar 

  • Ito K, Nozaki M, Kunihiro T, Miura C, Miura T (2011) Study of sediment cleanup using polychaetes. Interdisciplinary Studies on Environmental Chemistry — Marine Environmental Modeling & Analysis, Eds., K. Omori X, Guo N, Yoshie N, Fujii IC, Handoh A, Isobe and S. Tanabe, pp. 133–139.

  • Jones AB, Dennison WC, Preston NP (2001) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193(1-2):155–178

    Article  Google Scholar 

  • Kalantzi I, Karakassis I (2006) Benthic impacts of fish farming: meta-analysis of community and geochemical data. Mar Pollut Bull 52(5):484–493

    Article  CAS  Google Scholar 

  • Kinoshita K, Tamaki S, Yoshioka M, Srithonguthai S, Kunihiro T, Hama D, Tsutsumi H (2008) Bioremediation of organically enriched sediment deposited below fish farms with artificially mass-cultured colonies of a deposit-feeding polychaete Capitella sp. I. Fish Sci 74(1):77–87

    Article  CAS  Google Scholar 

  • Kristensen E (2001) Impact of polychaetes (Nereis and Arenicola) on sediment biogeochemistry in coastal areas: past, present, and future developments. In: Abstract of Papers of the American Chemical Society 221, U538–U538

  • Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. Coast Estuar Stud 60:125–157

    Article  Google Scholar 

  • Kristensen E, Mikkelsen OL (2003) Impact of the burrow-dwelling polychaete Nereis diversicolor on the degradation of fresh and aged macroalgal detritus in a coastal marine sediment. Mar Ecol Prog Ser 265:141–153

    Article  CAS  Google Scholar 

  • Kristensen E, Jensen MH, Andersen TK (1985) The impact of polochaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J Exp Mar Biol Ecol 85:75–91

    Article  CAS  Google Scholar 

  • Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302

    Article  Google Scholar 

  • Kuhnert J, Veit-Köhler G, Büntzow M, Volkenborn N (2010) Sediment-mediated effects of lugworms on intertidal meiofauna. J Exp Mar Biol Ecol 387(1-2):36–43

    Article  Google Scholar 

  • Kunihiro T, Miyazaki T, Kinoshita K, Satou A, Inoue A, Hama D, Tsutsumi H (2005) Microbial community dynamics in organically enriched sediment below fish net pen culture with artificially cultured colonies of the polychaete Capitella sp. I. Bull Soc Sea Water Sci 59:343–353

    Google Scholar 

  • Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483(7388):198–200

    Article  CAS  Google Scholar 

  • Laverock B, Gilbert JA, Tait K, Osborn AM, Widdicombe S (2011) Bioturbation: impact on the marine nitrogen cycle. Biochem Soc Trans 39:315–320

    Article  CAS  Google Scholar 

  • Lytle JS, Lytle TF, Ogle JT (1990) Polyunsaturated fatty acid profiles as a comparative tool in assessing maturation diets of Penaeus vannamei. Aquaculture 89(3-4):287–299

    Article  CAS  Google Scholar 

  • Madsen SD, Forbes TL, Forbes VE (1997) Particle mixing by the polychaete Capitella species 1: coupling fate and effect of a particle-bound organic contaminant (fluoranthene) in a marine sediment. Mar Ecol Prog Ser 147:129–142

    Article  CAS  Google Scholar 

  • Mandario MAE (2018) Addressing gaps in the culture of pathogen-free polychaetes as feed in shrimp hatcheries. Fish for the People 16:19-23

  • Marques B, Calado R, Lillebø AI (2017) New species for the biomitigation of a super-intensive marine fish farm effluent: combined use of polychaete-assisted sand filters and halophyte aquaponics. Sci Total Environ 599:1922–1928

    Article  CAS  Google Scholar 

  • Marques B, Lillebø AI, Ricardo F, Nunes C, Coimbra MA, Calado R (2018) Adding value to ragworms (Hediste diversicolor) through the bioremediation of a super-intensive marine fish farm. Aquac Environ Interact 10:79–88

    Article  Google Scholar 

  • Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water–sediment interface in freshwater and marine ecosystems. J N Am Benthol Soc 30(3):770–778

    Article  Google Scholar 

  • Naessens E, Lavens P, Gomez L, Browdy C, McGovern-Hopkins K, Spencer A, Kawahigashi D, Sorgeloos P (1997) Maturation performance of Penaeus vannamei co-fed Artemia biomass preparations. Aquaculture 155:87–101

    Article  Google Scholar 

  • Nedwell DB (1982) The cycling of sulfur in marine and freshwater sediments. In: Nedwell DB, Brown CM (eds) Sediment microbiology. Academic Press, London, pp 73–106

    Google Scholar 

  • Needham SJ, Worden RH, McIlroy D (2005) Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes. J Sediment Res 75(6):1028–1037

    Article  Google Scholar 

  • Norkko J, Reed DC, Timmermann K, Norkko A, Gustafsson BG, Bonsdorff E, Slomp CP, Carstensen J, Conley DJ (2012) A welcome can of worms? Hypoxia mitigation by an invasive species. Glob Chang Biol 18(2):422–434

    Article  Google Scholar 

  • Oyo-Ita OE, Ekpo BO, Adie PA, Offem JO (2014) Organochlorine pesticides in sediment-dwelling animals from mangrove areas of the Calabar River, SE Nigeria. Environ Pollut 3(3):56

    Article  CAS  Google Scholar 

  • Palmer PJ (2010) Polychaete-assisted sand filters. Aquaculture 306(1-4):369–377

    Article  Google Scholar 

  • Peterson GS, Ankley GT, Leonard EN (1996) Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments. Environ Toxicol Chem 15(12):2147–2155

    CAS  Google Scholar 

  • Philippines, Council for Agriculture and Resources Research (1980) Standard methods of analysis for soil, plant tissue, water and fertilizer. Philippine Council for Agriculture and Resources Research, Farm Resources and Systems Research Division, Los Banos, Laguna, Philippines. 194 pp

  • Pombo A, Baptista T, Granada L, Ferreira SM, Gonçalves SC, Anjos C, Sá E, Chainho P, Cancela da Fonseca L, Fidalgo e Costa P, Costa JL (2018) Insight into aquaculture's potential of marine annelid worms and ecological concerns: a review. Rev Aquac. https://doi.org/10.1111/raq.12307

  • Preston NP, Jackson C, Thompson P, Austin M, Burford M, Rothlisberg PC (2000) Prawn farm effluent: composition, origin and treatment. Fisheries Research and Development Corporation, Australia. Final Report, Project, (95/162)

  • Purschke G (2006) Morphology, molecules, evolution and phylogeny in polychaeta and related taxa (Vol. 179). Springer Science & Business Media

  • Quintana CO, Hansen T, Delefosse M, Banta G, Kristensen E (2011) Burrow ventilation and associated porewater irrigation by the polychaete Marenzelleria viridis. J Exp Mar Biol Ecol 397(2):179–187

    Article  Google Scholar 

  • Read P, Fernandes T (2003) Management of environmental impacts of marine aquaculture in Europe. Aquaculture 226(1-4):139–163

    Article  CAS  Google Scholar 

  • Rosenberg R (2001) Marine benthic faunal successional stages and related sedimentary activity. Sci Mar 65(S2):107–119

    Article  Google Scholar 

  • Ross LG, Telfer TC, Falconer L, Soto D, Aguilar-Manjarrez J, Asmah R, Corner R (2013) Carrying capacities and site selection within the ecosystem approach to aquaculture. Site selection and carrying capacities for inland and coastal aquaculture, 19

  • San Diego-McGlone ML, Azanza RV, Villanoy CL, Jacinto GS (2008) Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Mar Pollut Bull 57(6):295–301

    Article  CAS  Google Scholar 

  • Santander SM, San D-M, Glone ML, Reichardt W (2008) Indicators of diminished organic matter degradation potential of polychaete burrows in Philippine mariculture areas. Philipp Agric Sci 91(3):295–300

    Google Scholar 

  • Schippers A, Jørgensen BB (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66(1):85–92

    Article  CAS  Google Scholar 

  • Simpson SL, Ward D, Strom D, Jolley DF (2012) Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere 88(8):953–961

    Article  CAS  Google Scholar 

  • Singh VP, Poernomo AT (1984) Acid sulfate soils and their management for brackish water fishponds. In: Advances in milkfish biology and culture. Paper presented at the 2nd international milkfish aquaculture conference, Island Publication House in association with the Aquaculture Department, Southeast Asian Fisheries Development Center and the International Development Research Centre, Iloilo City, Philippines

  • Soil and Plant Analysis Council, Inc. (2000) Soil analysis: handbook of reference methods. CRC Pres. 247 p.

  • Soil and Water Analysis Manual (n.d.) Centralized Analytical Laboratory, SEAFDEC/AQD, Tigbauan, Iloilo

  • Soil Science Division Staff (2017) Soil Survey Manual. USDA Handbook No. 18. US Government Printing Office, Washington DC

    Google Scholar 

  • Soto D (2009) Integrated mariculture: a global review. FAO fisheries and aquaculture technical paper, 529. Food and Agriculture Organization of the United Nations, Rome

  • Stewart NT, Boardman GD, Helfrich LA (2006) Treatment of rainbow trout (Oncorhynchus mykiss) raceway effluent using baffled sedimentation and artificial substrates. Aquac Eng 35(2):166–178

    Article  Google Scholar 

  • Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58(23):5115–5129

    Article  CAS  Google Scholar 

  • Timur P, bij de Vaate A (2017) Trophic index and efficiency. Encyclopedia of Ecology (Second Edition) 495-502. Retrieved from https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/deposit-feeder

  • Tsutsumi H, Montani S, Kobe H (2002) Bioremediation of organic matter loaded on the sediment in outdoor pools with a polychaete, Capitella sp. 1. Fish Sci 68:613–616

    Article  Google Scholar 

  • Tucker CS, Hargreaves JA (2008) Environmental best management practices for aquaculture. Wiley-Blackwell, Ames

    Book  Google Scholar 

  • Volkenborn N, Polerecky L, Wethey DS, Woodin SA (2010) Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnol Oceanogr 55(3):1231–1247

    Article  CAS  Google Scholar 

  • Wohlgemuth SE, Taylor AC, Grieshaber MK (2000) Ventilatory and metabolic responses to hypoxia and sulphide in the lugworm Arenicola marina (L.). J Exp Biol 203(20):3177–3188

    CAS  Google Scholar 

  • Woulds C, Middelburg JJ, Cowie GL (2012) Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids. Geochim Cosmochim Acta 77:396–414

    Article  CAS  Google Scholar 

  • Yang Y, Liu M, Xu S, Hou L, Ou D, Liu H, Hofmann T (2006) HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. Chemosphere 62(3):381–389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author is grateful to the Department of Science and Technology-Science Education Institute Accelerated Science and Technology Human Resource Development Program (DOST-SEI ASTHRDP) and UPV, Office of the Vice Chancellor for Research and Extension (OVCRE) for the scholarship and thesis grant, respectively. The authors are thankful to Vicente T. Balinas (statistician), the staff of Laboratory for Advanced Aquaculture Technology (LFAAT) and Polychaete Production Laboratory (Study Code FD-03-08 T) of SEAFDEC/AQD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel C. Añasco.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandario, M.A.E., Alava, V.R. & Añasco, N.C. Evaluation of the bioremediation potential of mud polychaete Marphysa sp. in aquaculture pond sediments. Environ Sci Pollut Res 26, 29810–29821 (2019). https://doi.org/10.1007/s11356-019-06092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06092-z

Keywords

Navigation