Skip to main content

Hydroxyl radical-mediated degradation of salicylic acid and methyl paraben: an experimental and computational approach to assess the reaction mechanisms

Abstract

Advanced oxidation processes (AOPs) using various energy sources and oxidants to produce reactive oxygen species are widely used for the destruction of recalcitrant water contaminants. The current study is about the degradation of two emerging pollutants—salicylic acid (SA) and methyl paraben (MP)—by high-frequency ultrasonication followed by identification of the oxidation byproducts and modeling of the reaction mechanisms using the density functional theory (DFT). The study also encompasses prediction of the aquatic toxicity and potential risk of the identified byproducts to some aquatic organisms bussing the ECOSAR (Ecological Structure Activity Relationships) protocol. It was found that the degradation of both compounds was governed by •OH attack and the pathways consisted of a cascade of reactions. The rate determining steps were decarboxylation (~ 60 kcal mol−1) and bond breakage reactions (~ 80 kcal mol−1), which were triggered by the stability of the reaction byproducts and overcome by the applied reaction conditions. Estimated values of the acute toxicities showed that only few of the byproducts were harmful to aquatic organisms, implying the environmental friendliness of the experimental method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agopcan Cinar S, Ziylan-Yavaş A, Catak S, Ince NH, Aviyente V (2017) Hydroxyl radical-mediated degradation of diclofenac revisited: a computational approach to assessment of reaction mechanisms and by-products. Environ Sci Pollut Res 24:18458–18469. https://doi.org/10.1007/s11356-017-9482-7

    CAS  Article  Google Scholar 

  2. Amin A, Chauhan S, Dare M, Bansal AK (2010) Degradation of parabens by Pseudomonas beteli and Burkholderia latens. Eur J Pharm Biopharm: Official Journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik 75(2):206–212. https://doi.org/10.1016/j.ejpb.2010.03.001

    CAS  Article  Google Scholar 

  3. Becke AD (1993a) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    CAS  Article  Google Scholar 

  4. Becke AD (1993b) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    CAS  Article  Google Scholar 

  5. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160. https://doi.org/10.1021/tx9902082

    CAS  Article  Google Scholar 

  6. Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science (80-) 339:814–815. https://doi.org/10.1126/science.1226850

    CAS  Article  Google Scholar 

  7. Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58:873–879. https://doi.org/10.2166/wst.2008.429

    CAS  Article  Google Scholar 

  8. Chaniotakis NA, Park SB, Meyerhoff ME (1989) Salicylate-selective membrane electrode based on tin(IV) tetraphenylporphyrin. Anal Chem 61:566–570. https://doi.org/10.1021/ac00181a013

    CAS  Article  Google Scholar 

  9. Chatel G, Novikova L, Petit S (2016) How efficiently combine sonochemistry and clay science? Appl Clay Sci 119:193–201

    CAS  Article  Google Scholar 

  10. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315. https://doi.org/10.1016/S0147-6513(03)00141-6

    CAS  Article  Google Scholar 

  11. Degraeve GM, Geiger DL, Meyer JS, Bergman HL (1980) Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch Environ Contam Toxicol 568:557–568

    Article  Google Scholar 

  12. ECOSAR, (2014) http://www.epa.gov/oppt/newchems/tools/21ecosar.

  13. Fang H, Gao Y, Li G, An J, Wong PK, Fu H, Yao S, Nie X, An T (2013) Advanced oxidation kinetics and mechanism of preservative propylparaben degradation in aqueous suspension of TiO2 and risk assessment of its degradation products. Environ Sci Technol 47:2704–2712. https://doi.org/10.1021/es304898r

    CAS  Article  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09 Revision E.01. Gaussian 09, Revis. E.01

  15. Gao Y, Ji Y, Li G, An T (2016) Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: influence of alkyl-chain length. Water Res 91:77–85. https://doi.org/10.1016/j.watres.2015.12.056

    CAS  Article  Google Scholar 

  16. George SJ, Gandhimathi R, Nidheesh PV, Ramesh ST (2014) Electro-Fenton oxidation of salicylic acid from aqueous solution: batch studies and degradation pathway. Clean Soil Air Water 42:1701–1711. https://doi.org/10.1002/clen.201300453

    CAS  Article  Google Scholar 

  17. Gmurek M, Rossi AF, Martins RC, Quinta-Ferreira RM, Ledakowicz S (2015) Photodegradation of single and mixture of parabens – kinetic, by-products identification and cost-efficiency analysis. Chem Eng J 276:303–314. https://doi.org/10.1016/j.cej.2015.04.093

    CAS  Article  Google Scholar 

  18. Guinea E, Arias C, Cabot PL, Garrido JA, Rodríguez RM, Centellas F, Brillas E (2008) Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res 42:499–511. https://doi.org/10.1016/j.watres.2007.07.046

    CAS  Article  Google Scholar 

  19. Gültekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manag 85:816–832. https://doi.org/10.1016/j.jenvman.2007.07.020

    CAS  Article  Google Scholar 

  20. Ince NH (2018), Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrason Sonochem 40 (B):97–103. https://doi.org/10.1016/j.ultsonch.2017.04.009

    CAS  Article  Google Scholar 

  21. Karnik BS, Davies SH, Baumann MJ, Masten SJ (2007) Use of salicylic acid as a model compound to investigate hydroxyl radical reaction in an ozonation–membrane filtration hybrid process. Environ Eng Sci 24(6):852–860

    CAS  Article  Google Scholar 

  22. Lam SM, Sin JC, Zuhairi Abdullah A, Rahman Mohamed A (2013) Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Mater Lett 93:423–426. https://doi.org/10.1016/j.matlet.2012.12.008

    CAS  Article  Google Scholar 

  23. Lee C, Hill C, Carolina N (1988) Role of massage in the management of an athlete. Pdf. 37:. doi: https://doi.org/10.1103/PhysRevB.37.785

    CAS  Article  Google Scholar 

  24. Lin Y, Ferronato C, Deng N, Wu F, Chovelon JM (2009) Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Catal B Environ 88:32–41. https://doi.org/10.1016/j.apcatb.2008.09.026

    CAS  Article  Google Scholar 

  25. Márquez-sillero I, Aguilera-herrador E, Cárdenas S, Valcárcel M (2010) Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. 1217:1–6. https://doi.org/10.1016/j.chroma.2009.11.005

    Article  Google Scholar 

  26. Mason TJ, and Peters D. 2002. Practical sonochemistry: power ultrasound uses and applications. Woodhead Publishing. book

  27. Mason TJ, Lorimer JP, Bates DM (1992) Quantifying sonochemistry: casting some light on a black art. Ultrasonics 30(1):40–42

    CAS  Article  Google Scholar 

  28. Monks TJ, Jones DC (2002) The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr Drug Metab 3:425–438. https://doi.org/10.2174/1389200023337388

    CAS  Article  Google Scholar 

  29. Nakada N, Shinohara H, Murata A, Kiri K, Managaki S, Sato N, Takada H (2007) Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res 41:4373–4382

    CAS  Article  Google Scholar 

  30. Ramaswamy BR, Kim JW, Isobe T, Chang KH, Amano A, Miller TW, Siringan FP, Tanabe S (2011) Determination of preservative and antimicrobial compounds in fish from Manila Bay, Philippines using ultra high performance liquid chromatography tandem mass spectrometry, and assessment of human dietary exposure. J Hazard Mater 192:1739–1745. https://doi.org/10.1016/j.jhazmat.2011.07.006

    CAS  Article  Google Scholar 

  31. Sánchez-Martín J, Beltrán-Heredia J, Domínguez JR (2013) Advanced photochemical degradation of emerging pollutants: methylparaben. Water Air Soil Pollut 224:1483. https://doi.org/10.1007/s11270-013-1483-7

    CAS  Article  Google Scholar 

  32. Sasi S, Rayaroth MP, Devadasan D, Aravind UK, Aravindakumar CT (2015) Influence of inorganic ions and selected emerging contaminants on the degradation of methylparaben : a Sonochemical approach. J Hazard Mater 300:202–209. https://doi.org/10.1016/j.jhazmat.2015.06.072

    CAS  Article  Google Scholar 

  33. Savun-Hekimoğlu B, Ince NH (2017) Decomposition of PPCPs by ultrasound-assisted advanced Fenton reaction: a case study with salicylic acid. Ultrason Sonochem 39:243–249. https://doi.org/10.1016/j.ultsonch.2017.04.013

    CAS  Article  Google Scholar 

  34. Savun-Hekimoğlu B, Ince NH (2019) Sonochemical and sonocatalytic destruction of methylparaben using raw, modified and SDS-intercalated particles of a natural clay mineral. Ultrason Sonochem 54:233–240

    Article  Google Scholar 

  35. Scheck CK, Frimmel FH (1995) Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Res 29:2346–2352

    CAS  Article  Google Scholar 

  36. Suslick KS, Hammerton DA, Cline RE (1986) Sonochemical hot spot. J Am Chem Soc 108:5641–5642

    CAS  Article  Google Scholar 

  37. Tay KS, Rahman NA, Bin AMR (2010) Ozonation of parabens in aqueous solution: kinetics and mechanism of degradation. Chemosphere 81:1446–1453. https://doi.org/10.1016/j.chemosphere.2010.09.004

    CAS  Article  Google Scholar 

  38. Taylor P, Stamatis NK Personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. J Environ Sci Health, Part B: Personal Care Compounds and Caffeine Tracer in Municipal Sewage Treatment Plant in Western Greece Occurrence and Removal of Emerging Pharmaceutical, 37–41. https://doi.org/10.1080/03601234.2013.781359

    CAS  Article  Google Scholar 

  39. Wales S, Kasprzyk-hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals ,personal care products , endocrine disruptors and illicit drugs in surface water in. 42:3498–3518. https://doi.org/10.1016/j.watres.2008.04.026

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The experimental part of the study was funded by Boğazici University Research Fund (BAP) through Project 18Y00D1.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nilsun Ince or Viktorya Aviyente.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 18464 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arslan, E., Hekimoglu, B.S., Cinar, S.A. et al. Hydroxyl radical-mediated degradation of salicylic acid and methyl paraben: an experimental and computational approach to assess the reaction mechanisms. Environ Sci Pollut Res 26, 33125–33134 (2019). https://doi.org/10.1007/s11356-019-06048-3

Download citation

Keywords

  • PPCPs
  • –OH
  • DFT
  • Sonolysis
  • Reaction mechanism
  • AOPs
  • ECOSAR