Skip to main content
Log in

Microarray analysis of apoptosis gene expression in liver injury induced by chronic exposure to arsenic and high-fat diet in male mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rapid growth in the incidence of liver disease is largely attributable to lifestyle and environmental contaminants, which are often overlooked as the leading causes of this problem. Thus, the possible contribution of arsenic (As) to high-fat diet (HFD)–induced liver damage was examined via microarray analysis. To perform this experiment, a total number of 40 healthy adult male NMRI mice (22–30 g) were used. To this end, these animals were randomly assigned to four groups of 10. Oxidative stress and histopathological parameters were also evaluated in the liver of the mice exposed to a minimally cytotoxic concentration of As (50 ppm) in drinking water while being fed with a HFD for 20 weeks. Subsequently, apoptosis gene expression profiling was utilized via real-time (RT) PCR array analysis. The results showed that As had increased the amount of HFD-induced liver damage and consequently amplified changes in oxidative stress factors, histopathological parameters, as well as apoptosis pathway genes. Investigating the expression profile of apoptosis pathway genes similarly revealed that caspase-8, as a main upstream contributor to the apoptosis pathway, might play an important role in the induction of apoptosis generated by As and HFD. Ultimately, this study highlighted that As in drinking water could increase sensitivity in mice to HFD-induced liver disease through strengthening apoptosis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro Methods in enzymology 105:121-126

  • Ahangarpour A, Alboghobeish S, Rezaei M, Khodayar MJ, Oroojan AA, Zainvand M (2018) Evaluation of diabetogenic mechanism of high fat diet in combination with arsenic exposure in male mice. Iran J Pharm Res 17:164–183

    CAS  Google Scholar 

  • Ahmed M (2015) Non-alcoholic fatty liver disease in 2015. World J Hepatol 7:1450

    Article  Google Scholar 

  • Bashir S, Sharma Y, Irshad M, Nag TC, Tiwari M, Kabra M, Dogra TD (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology 217:63–70. https://doi.org/10.1016/j.tox.2005.08.023

    Article  CAS  Google Scholar 

  • Benard O, Lim J, Apontes P, Jing X, Angeletti RH, Chi Y (2016) Impact of high-fat diet on the proteome of mouse liver. J Nutr Biochem 31:10–19

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Candé C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115(24):4727–4734

    Article  CAS  Google Scholar 

  • Chakraborty JB, Oakley F, Walsh MJ (2012) Mechanisms and biomarkers of apoptosis in liver disease and fibrosis Int J Hepatol 2012

  • Chen D, Ming L, Zou F, Peng Y, Van Houten B, Yu J, Zhang L (2014) TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity. Oncotarget 5:8107

    Google Scholar 

  • Choi SS, Diehl AM (2008) Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol 19:295–300

    Article  CAS  Google Scholar 

  • Choudhury S, Ghosh S, Mukherjee S, Gupta P, Bhattacharya S, Adhikary A, Chattopadhyay S (2016) Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells. J Nutr Biochem 38:25–40

    Article  CAS  Google Scholar 

  • Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR (2013) Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol 58:785–791

    Article  CAS  Google Scholar 

  • Dlamini Z, Mbita Z, Zungu M (2004) Genealogy, expression, and molecular mechanisms in apoptosis. Pharmacol Ther 101:1–15

    Article  CAS  Google Scholar 

  • Doğanyiğit Z, Silici S, Demirtaş A, Kaya E, Kaymak E (2019) Determination of histological, immunohistochemical and biochemical effects of acute and chronic grayanotoxin III administration in different doses in rats. Environ Sci Pollut Res 26 (2):1323–1335

  • Duan X-Y, Pan Q, Yan S-Y, Ding W-J, Fan J-G, Qiao L (2014) High-saturate-fat diet delays initiation of diethylnitrosamine-induced hepatocellular carcinoma. BMC Gastroenterol 14:195

    Article  CAS  Google Scholar 

  • Dutta M et al (2014) High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food Chem Toxicol 66:262–277

    Article  CAS  Google Scholar 

  • Eichhorst ST (2005) Modulation of apoptosis as a target for liver disease. Expert Opin Ther Targets 9:83–99

    Article  CAS  Google Scholar 

  • El Husseini N, Hales BF (2017) The roles of P53 and its family proteins, P63 and P73, in the DNA damage stress response in organogenesis-stage mouse embryos. Toxicol Sci 162:439–449

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  Google Scholar 

  • Elwej A, Grojja Y, Ghorbel I, Boudawara O, Jarraya R, Boudawara T, Zeghal N (2016) Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel. Environ Sci Pollut Res 23 :7559-7571

  • Fasshauer M, Bluher M (2015) Adipokines in health and disease Trends in pharmacological sciences 36:461-470 https://doi.org/10.1016/j.tips.2015.04.014

  • Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology 40:185–194

    Article  CAS  Google Scholar 

  • Flora SJ, Mehta A, Gupta R (2009) Prevention of arsenic-induced hepatic apoptosis by concomitant administration of garlic extracts in mice. Chem Biol Interact 177:227–233. https://doi.org/10.1016/j.cbi.2008.08.017

    Article  CAS  Google Scholar 

  • Guicciardi ME, Malhi H, Mott JL, Gores GJ (2013) Apoptosis and necrosis in the liver. Compr Physiol 3:977–1010

    Google Scholar 

  • Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377. https://doi.org/10.1038/nrm2391

    Article  CAS  Google Scholar 

  • He Z, Agostini M, Liu H, Melino G, Simon H-U (2015) p73 regulates basal and starvation-induced liver metabolism in vivo. Oncotarget 6:33178

    Google Scholar 

  • Hong YS, Song KH, Chung JY (2014) Health effects of chronic arsenic exposure. Journal of preventive medicine and public health = Yebang Uihakhoe chi 47:245–252. https://doi.org/10.3961/jpmph.14.035

    Article  Google Scholar 

  • Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11:369–381

    Article  CAS  Google Scholar 

  • Jelinek D, Castillo JJ, Arora SL, Richardson LM, Garver WS (2013) A high-fat diet supplemented with fish oil improves metabolic features associated with type 2 diabetes. Nutrition 29:1159–1165

    Article  CAS  Google Scholar 

  • Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, Kirsch RE, Hall Pde L (2003) Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18(11):1272–1282

    Article  Google Scholar 

  • Kleinert M et al (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140

    Article  Google Scholar 

  • Li H et al (2012) Cell death-inducing DFF45-like effector b (Cideb) is present in pancreatic beta-cells and involved in palmitate induced beta-cell apoptosis. Diabetes Metab Res Rev 28:145–155. https://doi.org/10.1002/dmrr.1295

    Article  CAS  Google Scholar 

  • Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity Proceedings of the National Academy of Sciences 100:3077-3082

  • Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32. https://doi.org/10.1093/toxsci/kfn120

    Article  CAS  Google Scholar 

  • Liu S-X, Davidson MM, Tang X, Walker WF, Athar M, Ivanov V, Hei TK (2005) Mitochondrial damage mediates genotoxicity of arsenic in mammalian cells. Cancer Res 65:3236–3242

    Article  CAS  Google Scholar 

  • Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147:765–783 e764

    Article  CAS  Google Scholar 

  • Majumdar S, Karmakar S, Maiti A, Choudhury M, Ghosh A, Das AS, Mitra C (2011) Arsenic-induced hepatic mitochondrial toxicity in rats and its amelioration by dietary phosphate. Environ Toxicol Pharmacol 31:107–118. https://doi.org/10.1016/j.etap.2010.09.011

    Article  CAS  Google Scholar 

  • Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol 2011:1–13

    Article  CAS  Google Scholar 

  • Mitchell RD 3rd, Dhammi A, Wallace A, Hodgson E, Roe RM (2016) Impact of environmental chemicals on the transcriptome of primary human hepatocytes: potential for health effects. J Biochem Mol Toxicol 30:375–395. https://doi.org/10.1002/jbt.21801

    Article  CAS  Google Scholar 

  • Niimi N, Sugo N, Aratani Y, Koyama H (2005) Genetic interaction between DNA polymerase β and DNA-PKcs in embryogenesis and neurogenesis. Cell Death Differ 12:184

    Article  CAS  Google Scholar 

  • Nutt LK, Gogvadze V, Uthaisang W, Mirnikjoo B, McConkey DJ, Orrenius S (2005) Research paper indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis. Cancer Biol Ther 4:459–467

    Article  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5:5. https://doi.org/10.1101/cshperspect.a008672

    Article  CAS  Google Scholar 

  • Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020448

  • Pi J et al (2002) Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 110:331

    Article  CAS  Google Scholar 

  • Ramalho RM et al (2006) Apoptosis and Bcl-2 expression in the livers of patients with steatohepatitis. Eur J Gastroenterol Hepatol 18:21–29

    Article  CAS  Google Scholar 

  • Ramanathan K, Balakumar B, Panneerselvam C (2002) Effects of ascorbic acid and a-tocopherol on arsenic-induced oxidative stress. Hum Exp Toxicol 21:675–680

    Article  CAS  Google Scholar 

  • Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, Mikus CR, Laye MJ, Laughlin MH, Booth FW, Ibdah JA (2010) Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol 52:727–736

    Article  CAS  Google Scholar 

  • Rehman K, Naranmandura H (2013) Double-edged effects of arsenic compounds: anticancer and carcinogenic effects. Curr Drug Metab 14:1029–1041

    Article  CAS  Google Scholar 

  • Ribeiro PS, Cortez-Pinto H, Solá S, Castro RE, Ramalho RM, Baptista A, Moura MC, Camilo ME, Rodrigues CMP (2004) Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol 99:1708–1717

    Article  CAS  Google Scholar 

  • Roy S, Narzary B, Ray A, Bordoloi M (2016) Arsenic-induced instrumental genes of apoptotic signal amplification in death-survival interplay. Cell Death Dis 2:16078. https://doi.org/10.1038/cddiscovery.2016.78

    Article  Google Scholar 

  • Santra A, Chowdhury A, Ghatak S, Biswas A, Dhali GK (2007) Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine. Toxicol Appl Pharmacol 220:146–155

    Article  CAS  Google Scholar 

  • Singh AP, Goel RK, Kaur T (2011) Mechanisms pertaining to arsenic toxicity. Toxicol Int 18:87–93. https://doi.org/10.4103/0971-6580.84258

    Article  Google Scholar 

  • Singh S, Greene RM, Pisano MM (2010) Arsenate-induced apoptosis in murine embryonic maxillary mesenchymal cells via mitochondrial-mediated oxidative injury. Birth Defects Research Part A: Clinical and Molecular Teratology 88:25–34

    CAS  Google Scholar 

  • Skeldon AM, Morizot A (2016) Caspase-12, but not caspase-11, inhibits obesity and insulin resistance 196:437-447 https://doi.org/10.4049/jimmunol.1501529

  • Soltis AR et al (2017) Hepatic dysfunction caused by consumption of a high-fat diet. Cell Rep 21:3317–3328

    Article  CAS  Google Scholar 

  • Sourbier C et al (2014) Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell 26:840–850

    Article  CAS  Google Scholar 

  • Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, Cave MC (2013) Toxicant-associated steatohepatitis. Toxicol Pathol 41:343–360. https://doi.org/10.1177/0192623312468517

    Article  CAS  Google Scholar 

  • Wang B, Sun J, Ma Y, Wu G, Shi Y, Le G (2014) Increased oxidative stress and the apoptosis of regulatory T cells in obese mice but not resistant mice in response to a high-fat diet. Cell Immunol 288:39–46. https://doi.org/10.1016/j.cellimm.2014.02.003

    Article  CAS  Google Scholar 

  • Wang JY, Minami Y, Zhu J (2006) Abl and Cell Death. In: Abl Family Kinases in Development and Disease. Springer, pp 26-47

  • Wang K (2014) Molecular mechanisms of hepatic apoptosis. Cell Death Dis 5:e996. https://doi.org/10.1038/cddis.2013.499

    Article  CAS  Google Scholar 

  • Wang K (2015) Molecular mechanisms of hepatic apoptosis. Cell Death Dis 5:e996

    Article  Google Scholar 

  • Yu W-R, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG (2009) Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis 33:149–163

    Article  CAS  Google Scholar 

  • Zeinvand-Lorestani M, Kalantari H, Khodayar MJ, Teimoori A, Saki N, Ahangarpour A, Rahim F (2018a) Autophagy upregulation as a possible mechanism of arsenic induced diabetes 8:11960 https://doi.org/10.1038/s41598-018-30439-0

  • Zeinvand-Lorestani M et al (2018b) Dysregulation of Sqstm1, mitophagy, and apoptotic genes in chronic exposure to arsenic and high-fat diet (HFD). Environ Sci Pollut Res Int 25:34351–34359. https://doi.org/10.1007/s11356-018-3349-4

    Article  CAS  Google Scholar 

  • Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, Zhang L, Wang Y (2006) High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci 79(11):1100–1107

    Article  CAS  Google Scholar 

Download references

Funding

This paper is issued from Ph.D. thesis Azin Samimi and was financially supported by Toxicology Research Center (Grant number TRC-9608) of Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Azin Samimi designed the experiments, analyzed the data, and prepared the manuscript. Ali Teimoori, Hadis Alidadi, and Azin Samimi performed the experiments. Heibatullah Kalantari, Mohammad Javad Khodayar, Najmaldin Saki, and Layasadt Khorsandi reviewed the manuscript.

Corresponding author

Correspondence to Azin Samimi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantari, H., Khodayar, M.J., Saki, N. et al. Microarray analysis of apoptosis gene expression in liver injury induced by chronic exposure to arsenic and high-fat diet in male mice. Environ Sci Pollut Res 26, 26351–26366 (2019). https://doi.org/10.1007/s11356-019-05907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05907-3

Keywords

Navigation