Skip to main content
Log in

Toxicological risks of Acid Bordeaux B on duckweed and the plant potential for effective remediation of dye-polluted waters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, the ability of duckweed (Lemna minor L.) in the decolorization of Acid Bordeaux B (ABB), as an aminoazo benzene dye, from polluted waters was evaluated. It was found that the rise of temperature and enhancement of the plant initial weight led to increasing the dye removal efficiency, but raising the initial dye concentration and pH reduced it. However, in the optimum conditions, the plant exhibited a considerable potential for the phytoremediation of ABB by 94%. The comparison of the experimental dye removal efficiency with its predicted amounts from ANN (R2 = 0.99) showed that ANN supplied the appropriate predictive performance. Inhibition of the plant growth and reduction of the chlorophyll (Chl) a, b, and a+b content (around 26%, 32.4%, and 28.6%, respectively) after plant treatment with 40 mg/L of ABB confirmed its toxic effects on the plant in high concentrations. Antioxidant enzyme activities and contents of malondialdehyde, phenol, and flavonoids were also raised by the augmentation of the ABB concentration. As a result of the ABB biodegradation pathway, seven intermediate compounds were identified using GC-MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.

Similar content being viewed by others

References

  • Ahmad R, Kim YH, Kim MD, Kwon SY, Cho K, Lee HS, Kwak SS (2010) Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant 138:520–533

    Article  CAS  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes-a review. Water Air Soil Pollut 213:251–273

    Article  CAS  Google Scholar 

  • Asgari Lajayer B, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc., Boka Raton, pp 155–177

    Google Scholar 

  • Birhanlı A, Ozmen M (2005) Evaluation of the toxicity and teratogenity of six commercial textile dyes using the frog embryo teratogenesis assay Xenopus. Drug Chem Toxicol 28:51–65

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Çetinkaya Dönmez G, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Chacko JT, Kalidass S (2011) Enzymatic degradation of azo dyes- a review. Int J Environ Sci 1:1250–1260

    Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. In: Colwick SP, Kalplan NO (eds) Methods in Enzymolology, vol 2. Academic Press, New York, pp 764–775

    Chapter  Google Scholar 

  • Chandanshive VV, Rane NR, Tamboli AS, Gholave AR, Khandare RV, Govindwar SP (2017) Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. J Hazard Mater 338:47–56

    Article  CAS  Google Scholar 

  • Chandanshive VV, Kadam SK, Khandare RV, Kurade MB, Jeon B-H, Jadhav JP, Govindwar SP (2018) In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere 210:968–976

    Article  CAS  Google Scholar 

  • Chandra S, Khan S, Avula B, Lata H, Yang MH, ElSohly MA, Khan IA (2014) Assessment of total phenolic and flavonoid content, antioxidant properties, and yield ofaeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid Based Complement Alternat Med 2014:1–9

    Article  Google Scholar 

  • Cleuvers M, Ratte HT (2002) Phytotoxicity of coloured substances: is Lemna duckweed an alternative to the algal growth inhibition test? Chemosphere 49:9–15

    Article  CAS  Google Scholar 

  • Copaciu F, Opriş O, Niinemets Ü, Copolovici L (2016) Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves. Water Air Soil Pollut 227:196

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333–339

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140

    Article  CAS  Google Scholar 

  • Kabra AN, Khandare RV, Kurade MB, Govindwar SP (2011) Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Environ Sci Pollut Res 18:1360–1373

    Article  CAS  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33:1697–1714

    Article  CAS  Google Scholar 

  • Khandare RV, Kabra AN, Awate AV, Govindwar SP (2013) Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol 10:1039–1050

    Article  CAS  Google Scholar 

  • Khataee AR, Kasiri MB (2011) Modeling of biological water and wastewater treatment processes using artificial neural networks. Clean- Soil Air Water 39:742–749

    Article  CAS  Google Scholar 

  • Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M (2010) Biological treatment of a dye solution by Macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol 101:2252–2258

    Article  CAS  Google Scholar 

  • Khataee AR, Movafeghi A, Torbati S, Salehi Lisar SY, Zarei M (2012) Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: Artificial neural network modeling. Ecotoxicol Environ Saf 80:291–298

    Article  CAS  Google Scholar 

  • Kong W, Liu F, Zhang C, Zhang J, Feng H (2016) Non-destructive determination of malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Sci Rep 6:35393

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods in Enzymology, vol 148. Academic Press, London, pp 350–382

    Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62:275–284

    Article  CAS  Google Scholar 

  • Movafeghi A, Khataee AR, Torbati S, Zarei M, Lisar SYS (2013) Bioremoval of C.I. Basic Red 46 as an azo dye from contaminated water by Lemna minor L.: Modeling of key factor by neural network. Environ Prog Sustain Energy 32:1082–1089

    Article  CAS  Google Scholar 

  • Movafeghi A, Khataee AR, Moradi Z, Vafaei F (2016) Biodegradation of direct blue 129 diazo dye by Spirodella polyrhiza: an artificial neural networks modering. Int J Phytoremed 18:337–347

    Article  CAS  Google Scholar 

  • Obinger C, Maj M, Nicholls P, Loewen P (1997) Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Arch Biochem Biophys 342:58–67

    Article  CAS  Google Scholar 

  • OECD (2006) Test No. 221: Lemna sp. growth inhibition test, OECD guidelines for the testing of chemicals. OECD Publishing, Paris

    Google Scholar 

  • Oliveira DP, Carneiro PA, Sakagami MK, Zanoni MVB, Umbuzeiro GA (2007) Chemical characterization of a dye processing plant effluent: Identification of the mutagenic components. Mutat Res Genet Toxicol Environ Mutagen 626:135–142

    Article  CAS  Google Scholar 

  • Paterson S, Mackay D, Tam D, Shiu WY (1990) Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere 21:297–331

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Radic S, Babic M, Skobic D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73:336–342

    Article  CAS  Google Scholar 

  • Rahman MM, Chongling Y, Rahman MDM, Islam KS (2012) Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.). Plant Biosyst 146:47–57

    Article  Google Scholar 

  • Rane NR, Chandanshive VV, Watharkar AD, Khandare RV, Patil TS, Pawar PK, Govindwar SP (2015) Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: an anatomical, enzymatic and pilot scale study. Water Res 83:271–281

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Schröder P, Daubner D, Maier H, Neustifter J, Debus R (2008) Phytoremediation of organic xenobiotics – glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99:7183–7191

    Article  CAS  Google Scholar 

  • Shetty KV, Nandennavar S, Srinikethan G (2008) Artificial neural networks model for the prediction of steady state phenol biodegradation in a pulsed plate bioreactor. J Chem Technol Biotechnol 83:1181–1189

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in Enzymology, vol 299. Academic Press, pp 152–178

  • Steinberg RA (1946) Mineral requirments of Lemna minor. Plant Physiol 21:42–48

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  Google Scholar 

  • Tarrahi R, Khataee A, Movafeghi A, Rezanejad F, Gohari G (2017) Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor. Chemosphere 181:655–665

    Article  CAS  Google Scholar 

  • Torbati S (2016) Artificial neural network modeling of biotreatment of malachite green by Spirodela polyrhiza: study of plant physiological responses and the dye biodegradation pathway. Process Saf Environ 99:11–19

    Article  CAS  Google Scholar 

  • Torbati S, Khataee AR, Movafeghi A (2014) Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: investigation of some physiological responses and effects of operational parameters. Chem Eng Res Des 92:1934–1941

    Article  CAS  Google Scholar 

  • Torbati S, Movafeghi A, Khataee AR (2015) Biodegradation of C.I. Acid Blue 92 by Nasturtium officinale: study of some physiological responses and metabolic fate of dye. Int J Phytoremed 17:322–329

    Article  CAS  Google Scholar 

  • Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC (2012) Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci 182:59–70

    Article  CAS  Google Scholar 

  • Vafaei F, Movafeghi A, Khataee A (2013) Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris). J Environ Sci 25:2214–2222

    Article  CAS  Google Scholar 

  • Wang H, Zheng X-W, Su J-Q, Tian Y, Xiong X-J, Zheng T-L (2009) Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171:654–659

    Article  CAS  Google Scholar 

  • Wang Z, Xiao B, Song L, Wang C, Zhang J (2012) Responses and toxin bioaccumulation in duckweed (Lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress. J Hazard Mater 229-230:137–144

    Article  CAS  Google Scholar 

  • Winterbourn CC, McGrath BM, Carrell RW (1976) Reactions involving superoxide and normal and unstable haemoglobins. Biochem J 155:493–502

    Article  CAS  Google Scholar 

  • Yin Y, Wang X, Yang L, Sun Y, Guo H (2010) Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. Ecotoxicology 19:1102–1110

    Article  CAS  Google Scholar 

  • Zezulka Š, Kummerová M, Babula P, Váňová L (2013) Lemna minor exposed to fluoranthene: growth, biochemical, physiological and histochemical changes. Aquat Toxicol 140-141:37–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Urmia Lake Research Institute, Urmia University, Iran, for providing all kinds of support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Torbati.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torbati, S. Toxicological risks of Acid Bordeaux B on duckweed and the plant potential for effective remediation of dye-polluted waters. Environ Sci Pollut Res 26, 27699–27711 (2019). https://doi.org/10.1007/s11356-019-05898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05898-1

Keywords

Navigation