Skip to main content

Advertisement

Log in

Environmental assessment and historic erosion calculation of abandoned mine tailings from a semi-arid zone of northwestern Mexico: insights from geochemistry and unmanned aerial vehicles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mining is known as one of the primary economic activities where exploitation of minerals and other materials have become essential for human development. However, this activity may represent a risk to the environment, starting from deforestation and ending with production of residues that might contain potentially toxic elements. Tailing deposits from historical mining are an example of waste that may represent an environmental concern when abandoned and exposed to environmental conditions. The town of Nacozari de Garcia, in northwestern Mexico, has three abandoned mine tailings (locally known as tailings I, II, and III) located around the urban area that represent important sources of dust and pollution. Images obtained using unmanned aerial vehicles (UAV) in conjunction with geochemical data are used to assess historic erosion calculation and pollution considering contamination and hazard indexes in tailings II and III. Digital elevation models of abandoned tailings were obtained using photogrammetry with UAV. A total of 37 surficial samples were collected from mine tailings to determine elemental concentrations (As, Cu, Pb, W, Zn) using portable X-ray fluorescence. Higher concentrations were found on samples from mine tailing II. Average concentrations followed the decreasing order of Cu > Zn > W > Pb > As for tailing II, whereas decreasing order of Cu > Zn > W > As > Pb was found for tailing III. Contamination Index (CI) values obtained from tailings II and III represent a low potential of pollution, whereas efflorescent crusts from these tailings represent a high potential of polluting soils and sediments by dust generation. Hazard Average Quotient (HAQ) values on both tailings suggest a very high potential of contamination if fluids infiltrate tailings and interact with surficial water and/or groundwater. Obtained surfaces of mine tailings II and III are 146,216 and 216,689 m2, respectively, which represent around 11% of the urbanized area. A loss mass of 321,675 tons was determined for mine tailing II, whereas 634,062 tons for tailing III, accounting for 0.96 million tons of total eroded mass. Since abandonment, calculated erosion rates of 493 t ha−1 year−1 (tailing II) and 232 t ha−1 year−1 (tailing III) are in agreement with those determined in other mining areas. CI and HAQ indexes provide good estimates of pollution associated with abandoned mine tailings from Nacozari de García. Historic erosion determined in these tailings is an environmental concern since eroded material and polluted water have been incorporated into the Moctezuma River, which feeds several villages, whose major activities include agriculture and livestock raising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams DK, Comrie AC (1997) The north American monsoon. Bull Am Meteorol Soc 78(10):2197–2214

    Article  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Book  Google Scholar 

  • Alberruche del Campo ME, Arranz-González JC, Rodríguez-Pacheco R, Vadillo-Fernández L, Rodríguez-Gómez V, Fernández-Naranjo FJ (2014) In: Instituto Geológico Minero de España-Ministerio de Agricultura, Alimentación y Medio Ambiente (ed) Manual para la evaluación de riesgos de instalaciones de residuos de industrias extractivas cerradas o abandonadas, Madrid

  • Anawar HM (2015) Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J Environ Manag 158:111–121

    Article  CAS  Google Scholar 

  • Arranz-González JC, Rodríguez-Gómez V, del Campo EA, Vadillo-Fernández L, Fernández-Naranjo FJ, Reyes-Andrés J, Rodríguez-Pacheco R (2016) A methodology for ranking potential pollution caused by abandoned mining wastes: application to sulfide mine tailings in Mazarrón (Southeast Spain). Environ Earth Sci 75(8):1–10

    Article  CAS  Google Scholar 

  • Ballabio C, Panagos P, Lugato E, Huang JH, Orgiazzi A, Jones A, Fernández-Ugalde O, Borrelli P, Montanarella L (2018) Copper distribution in European topsoils: an assessment based on LUCAS soil survey. Sci Total Environ 636:282–298

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. Treatise on geochemistry, vol 9, p 612

    Google Scholar 

  • Brading DA, Cross HE (1972) Colonial silver mining: Mexico and Peru. Hisp Am Hist Rev 52(4):545–579

    Article  Google Scholar 

  • Bugosh N, Epp E (2019) Evaluating sediment production from native and fluvial geomorphic-reclamation watersheds at La Plata Mine. Catena 174:383–398

    Article  Google Scholar 

  • Cara S, Fiori M, Matzuzzi C (2013) Assessment of landscape by photogrammetry proximity UAV survey technique: a case study of an abandoned mine site in the Furtei area (Sardinia-Italy). In Proceedings of the 23rd International Mining Congress of Turkey: 83–91

  • Çevik F, Göksu MZL, Derici OB, Fındık Ö (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess 152(1–4):309–317

    Article  CAS  Google Scholar 

  • Chesley JT, Leier AL (2018) Sandstone-body variability in the medial–distal part of an ancient distributive fluvial system, salt wash member of the Morrison Formation, Utah, USA. J Sediment Res 88(5):568–582

    Article  Google Scholar 

  • Corona-Chávez P, Maldonado R, Ramos-Arroyo YR, Robles-Camacho J, Lozano-SantaCruz R, Martínez-Medina M (2017) Geoquímica y mineralogía de los jales del distrito minero Tlalpujahua-El Oro, México, y sus implicaciones de impacto ambiental. Revista Mexicana de Ciencias Geológicas 34(3):250–273

    Article  Google Scholar 

  • Corrales-Pérez D, Martín-Romero F (2018) Adecuaciones para mejorar la aplicación del método D3987-85 en la extracción de EPT de los antiguos residuos mineros El Fraile, Guerrero, México. Rev Mex Cienc Geol 35(1):1–17

    Article  Google Scholar 

  • Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

    Article  CAS  Google Scholar 

  • de la O-Villanueva M, Meza-Figueroa D, Maier R, Moreno D, Gomez-Alvarez A, Del Rio-Salas R, Mendívil H, Montijo A (2013) Procesos erosivos en jales de la presa I de Nacozari de García, Sonora y su efecto en la dispersión de contaminantes. Bol Soc Geol Mex 65:27–38

    Google Scholar 

  • Del Rio-Salas R, Ayala-Ramírez Y, Loredo-Portales R, Romero F, Molina-Freaner F, Minjarez-Osorio C, Pi-Puig T, Ochoa-Landín L, Moreno-Rodríguez V (2019) Mineralogy and geochemistry of rural road dust and nearby mine tailings: a case of ignored pollution hazard from an abandoned mining site in semi-arid zone. Nat Resour Res. https://doi.org/10.1007/s11053-019-09472-x

  • Eltner A (2016) Photogrammetric techniques for across-scale soil erosion assessment: developing methods to integrate multi-temporal high resolution topography data at field plots. Dissertation, Technische Universität Dresden

  • European Council (1998) European Council of the European Union. Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commun L330:32–54

    Google Scholar 

  • Fernández-Lozano J, Gutiérrez-Alonso G (2016) Aplicaciones geológicas de los drones. Rev Soc Geol España 29(1):89–105

    Google Scholar 

  • Foulds SA, Brewer PA, Macklin MG, Haresign W, Betson RE, Rassner SME (2014) Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change. Sci Total Environ 476:165–180

    Article  CAS  Google Scholar 

  • Gitari WM, Thobakgale R, Akinyemi SA (2018) Mobility and attenuation dynamics of potentially toxic chemical species at an abandoned copper mine tailings dump. Minerals 8(2):64

    Article  CAS  Google Scholar 

  • González-León CM, Solari L, Solé J, Ducea M, Lawton TF, Bernal JP, González-Becuar E, Gray F, López-Martínez M, Lozano-Santacruz R (2011) Stratigraphy, geochronology, and geochemistry of the Laramide magmatic arc in north-Central Sonora, Mexico. Geosphere 7(6):1392–1418

    Article  Google Scholar 

  • Götze C, Beyer F, Gläßer C (2016) Pioneer vegetation as an indicator of the geochemical parameters in abandoned mine sites using hyperspectral airborne data. Environ Earth Sci 75(7):613

    Article  CAS  Google Scholar 

  • Hämmerle M, Schütt F, Höfle B (2016) Terrestrial and unmanned aerial system imagery for deriving photogrammetric three-dimensional point clouds and volume models of mass wasting sites. J Appl Remote Sens 10(2):026029

    Article  Google Scholar 

  • Harris DL, Lottermoser BG, Duchesne J (2003) Ephemeral acid mine drainage at the Montalbion silver mine, North Queensland. Aust J Earth Sci 50(5):797–809

    Article  CAS  Google Scholar 

  • Hasan M, Kausar D, Akhter G, Shah MH (2018) Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method. Ecotoxicol Environ Saf 147:283–291

    Article  CAS  Google Scholar 

  • Hudson-Edwards K (2016) Tackling mine wastes. Science 352(6283):288–290

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7(6):375–380

    Article  Google Scholar 

  • Jackisch R, Lorenz S, Zimmermann R, Möckel R, Gloaguen R (2018) Drone-borne hyperspectral monitoring of acid mine drainage: an example from the Sokolov lignite district. Remote Sens 10(3):385

    Article  Google Scholar 

  • Jade RK (2015) Temporal changes due to Mining in Khetri Copper Complex, Rajasthan. Procedia Earth Planet Sci 11:165–172

    Article  Google Scholar 

  • Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40(1):303–350

    Article  CAS  Google Scholar 

  • Ji Y, Feng Y, Wu J, Zhu T, Bai Z, Duan C (2008) Using geoaccumulation index to study source profiles of soil dust in China. J Environ Sci 20(5):571–578

    Article  CAS  Google Scholar 

  • Keatley AC, Martin PG, Hallam KR, Payton OD, Awbery R, Carvalho FP, Oliveira JM, Silva L, Malta M, Scott TB (2018) Source identification of uranium-containing materials at mine legacy sites in Portugal. J Environ Radioact 183:102–111

    Article  CAS  Google Scholar 

  • Kossoff D, Dubbin WE, Alfredsson M, Edwards SJ, Macklin MG, Hudson-Edwards KA (2014) Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl Geochem 51:229–245

    Article  CAS  Google Scholar 

  • Kostarelos K, Gavriel I, Stylianou M, Zissimos AM, Morisseau E, Dermatas D (2015) Legacy soil contamination at abandoned mine sites: making a case for guidance on soil protection. Bull Environ Contam Toxicol 94(3):269–274

    Article  CAS  Google Scholar 

  • Kraus U, Wiegand J (2006) Long-term effects of the Aznalcóllar mine spill—heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Sci Total Environ 367(2–3):855–871

    Article  CAS  Google Scholar 

  • Lam EJ, Gálvez ME, Cánovas M, Montofré IL, Rivero D, Faz A (2016) Evaluation of metal mobility from copper mine tailings in northern Chile. Environ Sci Pollut Res 23(12):11901–11915

    Article  CAS  Google Scholar 

  • Lemus R, Venezia CF (2015) An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit Rev Toxicol 45(5):388–411

    Article  CAS  Google Scholar 

  • Lewis C, Ellis RP, Vernon E, Elliot K, Newbatt S, Wilson RW (2016) Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses. Sci Rep 6:21554

    Article  CAS  Google Scholar 

  • Liakopoulos A, Lemiere B, Michael K, Crouzet C, Laperche V, Romaidis I, Drougas I, Lassin A (2010) Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece). Waste Manag Res 28(11):996–1009

    Article  CAS  Google Scholar 

  • Lodhia SK (2018) Mining and sustainable development: current issues. Routledge, London

    Book  Google Scholar 

  • Lottermoser B (2007) Mine wastes. Characterization, treatment, environmental impacts, 2nd edn. Springer, Berlín

    Google Scholar 

  • Ma Y, Dickinson N, Wong M (2002) Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol Fert Soils 36(1):79–86

    Article  CAS  Google Scholar 

  • Martín-Duque JF, Zapico I, Oyarzun R, López-García JA, Cubas P (2015) A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: new insights and environmental implications from SE Spain. Geomorphology 239:1–16

    Article  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59

    Article  CAS  Google Scholar 

  • Meza-Figueroa D, Maier RM, de la O-Villanueva M, Gómez-Alvarez A, Moreno-Zazueta A, Rivera J, Campillo A, Grandlic CJ, Anaya R, Palafox-Reyes J (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 77(1):140–147

    Article  CAS  Google Scholar 

  • Mileusnić M, Mapani BS, Kamona AF, Ružičić S, Mapaure I, Chimwamurombe PM (2014) Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. J Geochem Explor 144:409–420

    Article  CAS  Google Scholar 

  • Nikolakopoulos KG, Kozarski D, Kogkas S (2017) Coastal areas mapping using UAV photogrammetry. In Earth Resources and Environmental Remote Sensing/GIS Applications VIII (Vol. 10428, p. 104280O). International Society for Optics and Photonics

  • NOM-141 (2003) Official Mexican standard that establishes the procedure for characterizing mine tailings, as well as the specifications and criteria for the characterization and preparation of the site, project, construction, operation and post operation of mine tailings dams. Secretariat of Environment and Natural Resources of Mexico (SEMARNAT)

  • NOM-157 (2009) Official Mexican Standard that establishes the elements and procedures for implementing handling plans for mining wastes. Secretariat of Environment and Natural Resources of Mexico (SEMARNAT)

  • Ochoa-Landín L, Pérez-Segura E, Del Rio-Salas R, Valencia-Moreno M (2011) Depósitos minerales de Sonora, México. In: Calmus T (ed) Panorama de la geología de Sonora, México, Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118:299–331

  • Palomino-Medina, LA (2017) Origen y caracterización geoquímica - mineralógica de las sales eflorescentes en jales mineros: caso Nacozari de García Sonora, México. Master thesis. Universidad Nacional Autónoma de México

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:11. https://doi.org/10.1155/2013/158764

  • Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178(1–3):739–746

    Article  CAS  Google Scholar 

  • Rauhala A, Tuomela A, Davids C, Rossi P (2017) UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. Remote Sens 9(12):1318

    Article  Google Scholar 

  • Romero FM, Armienta MA, Gutiérrez ME, Villaseñor G (2008) Factores geológicos y climáticos que determinan la peligrosidad y el impacto ambiental de jales mineros. Rev Int Contam Ambient 24(2):43–54

    CAS  Google Scholar 

  • Sağlam ES, Akçay M (2016) Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Environ Sci Pollut R 23(7):6584–6607

    Article  CAS  Google Scholar 

  • Sánchez-Bisquert D, Castejón JMP, García-Fernández G (2017) The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain). Atmos Environ 152:256–269

    Article  CAS  Google Scholar 

  • Sánchez-Donoso R, Martín-Duque JF, Crespo E, Higueras PL (2019) Tailing’s geomorphology of the San Quintín mining site (Spain): landform catalogue, aeolian erosion and environmental implications. Environ Earth Sci 78(5):166

    Article  CAS  Google Scholar 

  • Santos AE, Cruz-Ortega R, Meza-Figueroa D, Romero FM, Sanchez-Escalante JJ, Maier RM, Neilson JW, Alcaraz LD, Molina-Freaner FE (2017) Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential. PeerJ 5:e3280

    Article  CAS  Google Scholar 

  • Skipor AK, Campbell PA, Patterson LM, Anstutz HC, Schmalzried TP, Jacobs JJ (2002) Serum and urine metal levels in patients with metal-on-metal surface arthroplasty. J Mater Sci Mater Med 13(12):1227–1234

    Article  CAS  Google Scholar 

  • SMN (2010) Servicio Meteorológico Nacional. Comisión Nacional del Agua. Portal del Servicio Meteorológico Nacional http://smn.cna.gob.mx

  • Solà C, Burgos M, Plazuelo Á, Toja J, Plans M, Prat N (2004) Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). Sci Total Environ 333(1–3):109–126

    Article  CAS  Google Scholar 

  • Suh J, Choi Y (2017) Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ Earth Sci 76(4):144

    Article  Google Scholar 

  • Suppen N, Carranza M, Huerta M, Hernández MA (2006) Environmental management and life cycle approaches in the Mexican mining industry. J Clean Prod 14(12–13):1101–1115

    Article  Google Scholar 

  • Tong X, Liu X, Chen P, Liu S, Luan K, Li L, Liu S, Liu X, Xie H, Jin Y, Hong Z (2015) Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens 7(6):6635–6662

    Article  Google Scholar 

  • USEPA (2002) National recommended water quality criteria. EPA 822-R-02-047. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • USEPA (2012) Drinking water standards and health advisories, 2012 Edition. EPA 822-S-12-001. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • Valencia VA, Ruiz J, Barra F, Geherls G, Ducea M, Titley SR, Ochoa-Landín L (2005) U–Pb zircon and re–Os molybdenite geochronology from La Caridad porphyry copper deposit: insights for the duration of magmatism and mineralization in the Nacozari District, Sonora, Mexico. Mineralium Deposita 40(2):175–191

    Article  CAS  Google Scholar 

  • Valencia-Moreno M, Camprubí A, Ochoa-Landín L, Calmus T, Mendívil-Quijada H (2017) Latest Cretaceous-early Paleogene “boom” of porphyry Cu mineralization associated with the Laramide magmatic arc of Mexico. Ore Geol Rev 81:1113–1124

    Article  Google Scholar 

  • Xiang J, Chen J, Sofia G, Tian Y, Tarolli P (2018) Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ Earth Sci 77(6):220

    Article  Google Scholar 

  • Zapico I, Duque JFM, Bugosh N, Laronne JB, Ortega A, Molina A, Martín-Moreno C, Nicolau JM, Castillo LS (2018) Geomorphic reclamation for reestablishment of landform stability at a watershed scale in mined sites: The Alto Tajo Natural Park, Spain. Ecol Eng 111:100–116

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to J.F. Martínez-Rodríguez, F. Vega, A. Vázquez-Salgado and L.G. Martínez-Jardines and F. Romero for laboratory support. We are also thankful to M.A. Maldonado-Montaño, X. Palafox-Salcido and D.R. Reyes-Montoya for fieldwork assistance.

Funding

This investigation was partially supported by Project IA209616 (PAPIIT-UNAM), granted to R. Del Rio-Salas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Del Rio-Salas.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Ortega, M., Del Rio-Salas, R., Valencia-Sauceda, J. et al. Environmental assessment and historic erosion calculation of abandoned mine tailings from a semi-arid zone of northwestern Mexico: insights from geochemistry and unmanned aerial vehicles. Environ Sci Pollut Res 26, 26203–26215 (2019). https://doi.org/10.1007/s11356-019-05849-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05849-w

Keywords