Microfluidic tools for lipid production and modification: a review

Abstract

Microfluidics has great potential as an efficient tool for a large range of applications in industry. The ability of such devices to deal with an extremely small amount of fluid has additional benefits, including superlatively fast and efficient mass and heat transfer. These characteristics of microfluidics have attracted an enormous amount of interest in their use as a novel tool for lipid production and modification. In addition, lipid resources have a close relationship with energy resources, and lipids are an alternative renewable energy source. Here, recent advances in the application of microfluidics for lipid production and modification, especially in the discovery, culturing, harvesting, separating, and monitoring of lipid-producing microorganisms, will be reviewed. Other applications of microfluidics, such as the modification of lipids from microorganisms, will also be discussed. The novel microfluidic tools in this review will be useful in applications to improve lipid production and modification in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abo-State MAM, Reyad B, Ali M, Gomaa O, Youssif EA (2011) Comparing decolonization of dye by white rot fungi, free enzyme and immobilized enzyme. World Appl Sci J 14:1469–1486

    CAS  Google Scholar 

  2. Aghel B, Rahimi M, Sepahvand A, Alitabar M, Ghasempour HR (2014) Using a wire coil insert for biodiesel production enhancement in a microreactor. Energ Convers Manage 84:541–549

    CAS  Google Scholar 

  3. Ali Y, Hanna MA, Cuppett SL (1995) Fuel properties of tallow and soybean oil esters. J Am Oil Chem Soc 72:1557–1564

    CAS  Google Scholar 

  4. Alotaibi M, Manayil JC, Greenway GM, Haswell SJ, Kelly SM, Lee AF, Wilson K, Kyriakou G (2018) Lipase immobilised on silica monoliths as continuous-flow microreactors for triglyceride transesterification. React Chem Eng 3:68–74

    CAS  Google Scholar 

  5. And SS, Akoh CC (2001) Synthesis of structured lipids by transesterification of trilinolein catalyzed by Lipozyme IM60. J Agric Food Chem 49:2071–2076

    Google Scholar 

  6. Anuar ST, Zhao Y, Mugo SM, Curtis JM (2013) The development of a capillary microreactor for transesterification reactions using lipase immobilized onto a silica monolith. J Mol Catal B Enzym 92:62–70

    CAS  Google Scholar 

  7. Anuar ST, Mugo SM, Curtis JM (2015) A flow-through enzymatic microreactor for the rapid conversion of triacylglycerols into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC analysis. Anal Methods-UK 7:5898–5906

    CAS  Google Scholar 

  8. Au Lin C, AU Chang H, AU Hsu C (2016) A microfluidic platform for high-throughput single-cell isolation and culture. Jove-J Vis Exp 112:e54105

    Google Scholar 

  9. Bae S, Kim CW, Choi JS, Yang J, Seo TS (2013) An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content. Anal Bioanal Chem 405:9365–9374

    CAS  Google Scholar 

  10. Bang G, Kim YH, Yoon J, Yu YJ, Chung S, Kim JA (2017) On-chip lipid extraction using superabsorbent polymers for mass spectrometry. Anal Chem 89:13365–13373

    CAS  Google Scholar 

  11. Bensalem S, Lopes F, Bodenes P, Pareau D, Francais O, Le Pioufle B (2018) Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device. Bioresour Technol 257:129–136

    CAS  Google Scholar 

  12. Berger S, Stawikowska J, van Swaay D, DeMello A (2014) Continuous suspension of lipids in oil by the selective removal of chloroform via microfluidic membrane separation. Ind Eng Chem Res 53:9256–9261

    CAS  Google Scholar 

  13. Berthier EYEWK (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12:1224–1237

    CAS  Google Scholar 

  14. Bhavsar KV, Yadav GD (2018) n-Butyl levulinate synthesis using lipase catalysis: comparison of batch reactor versus continuous flow packed bed tubular microreactor. J Flow Chem 8:97–105

    CAS  Google Scholar 

  15. Bhoi R, Sen N, Singh KK, Mahajani SM, Shenoy KT, Rao H, Ghosh SK (2014) Transesterification of sunflower oil in microreactors. Int J Chem React Eng 12:1–16

  16. Billo RE, Oliver CR, Charoenwat R, Dennis BH, Wilson PA, Priest JW, Beardsley H (2015) A cellular manufacturing process for a full-scale biodiesel microreactor. J Manuf Syst 37:409–416

    Google Scholar 

  17. Birchler A, Berger M, Jaeggin V, Lopes T, Etzrodt M, Misun P, Pena-Francesch M, Schroeder T, Hierlemann A, Frey O (2015) Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids. Anal Chem 88:1222–1229

    Google Scholar 

  18. Chen M, Mertiri T, Holland T, Basu AS (2012a) Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae. Lab Chip 12:3870–3874

    Google Scholar 

  19. Chen YY, Chen ZM, Wang HY (2012b) Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system. Lab Chip 12:4569–4575

    CAS  Google Scholar 

  20. Chen Q, He Z, Liu W, Lin X, Wu J, Li H, Lin J (2015) Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing. Adv Healthc Mater 4:2291–2296

    CAS  Google Scholar 

  21. Chen J, Tsai W, Shao H, Wu J, Lai J, Lu S, Hung T, Yang C, Wu L, Chen J, Lee W, Chang Y (2016) Sensitive and specific biomimetic lipid coated microfluidics to isolate viable circulating tumor cells and microemboli for cancer detection. PLoS One 11:e0149633

    Google Scholar 

  22. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    CAS  Google Scholar 

  23. Chun JY, Godoi FC, Bansal N, Morand M, Bhandari B (2017) Investigation of nanovesicle liposome powder production from soy lecithin by spray drying. Dry Technol 35:1020–1028

    CAS  Google Scholar 

  24. Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, Limongi T, Raj PM, Cuda G, Candeloro P, Di Fabrizio E (2019a) Microfluidic platforms for cell cultures and investigations. Microelectron Eng 208:14–28

    CAS  Google Scholar 

  25. Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, Limongi T, Raj PM, Cuda G, Candeloro P, Di Fabrizio E (2019b) Microfluidic platforms for cell cultures and investigations. Microelectron Eng 208:14–28

    CAS  Google Scholar 

  26. Conde AJ, Batalla M, Cerda B, Mykhaylyk O, Plank C, Podhajcer O, Cabaleiro JM, Madrid RE, Policastro L (2014) Continuous flow generation of magnetoliposomes in a low-cost portable microfluidic platform. Lab Chip 14:4506–4512

    CAS  Google Scholar 

  27. Daw R, Finkelstein J (2006) Lab on a chip. Nature 442:367–367

    CAS  Google Scholar 

  28. Dewan A, Kim J, McLean RH, Vanapalli SA, Karim MN (2012) Growth kinetics of microalgae in microfluidic static droplet arrays. Biotechnol Bioeng 109:2987–2996

    CAS  Google Scholar 

  29. Elkady MF, Zaatout A, Balbaa O (2015) Production of biodiesel from waste vegetable oil via km micromixer. J Chem-Ny 2015:1–9

    Google Scholar 

  30. Eu YJ, Park HS, Kim DP, Wook Hong J (2014) A microfluidic perfusion platform for cultivation and screening study of motile microalgal cells. Biomicrofluidics 8:24113

    Google Scholar 

  31. Fernandes AC, Petersen B, Moller L, Gernaey KV, Kruhne U (2018) Caught in-between: system for in-flow inactivation of enzymes as an intermediary step in “plug-and-play” microfluidic platforms. New Biotechnol 47:39–49

    CAS  Google Scholar 

  32. Fernandez IAP, Liu DH, Zhao J (2016) LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Resour Conserv Recycl 119:117–127

    Google Scholar 

  33. Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A (2018) Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnol 16:12

    Google Scholar 

  34. Gruczynska E, Przybylski R, Aladedunye F (2015) Performance of structured lipids incorporating selected phenolic and ascorbic acids. Food Chem 173:778–783

    CAS  Google Scholar 

  35. Grünberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29:15–23

    Google Scholar 

  36. Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231

    CAS  Google Scholar 

  37. Han A, Hou H, Li L, Kim HS, de Figueiredo P (2013) Microfabricated devices in microbial bioenergy sciences. Trends Biotechnol 31:225–232

    CAS  Google Scholar 

  38. Hessel IDV (2013) Industrial microreactor process development up to production microreactors in organic chemistry and catalysis. Wiley-VCH

  39. Holcomb RE, Mason LJ, Reardon KF, Cropek DM, Henry CS (2011) Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device. Anal Bioanal Chem 400:245–253

    CAS  Google Scholar 

  40. Huang XQ, Lee RJ, Qi YH, Li YJ, Lu JH, Meng QF, Teng LS, Xie J (2017) Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget 8:96826–96836

    Google Scholar 

  41. Ilgen O (2012) Reaction kinetics of dolomite catalyzed transesterification of canola oil and methanol. Fuel Process Technol 95:62–66

    CAS  Google Scholar 

  42. Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sust Energ Rev 14:1312–1320

    CAS  Google Scholar 

  43. Jellali R, Zeller P, Gilard F, Legendre A, Fleury MJ, Jacques S, Tcherkez G, Leclerc E (2018) Effects of DDT and permethrin on rat hepatocytes cultivated in microfluidic biochips: metabolomics and gene expression study. Environ Toxicol Pharmacol 59:1–12

    CAS  Google Scholar 

  44. Jensen KF (2017) Flow chemistry—microreaction technology comes of age. AICHE J 63:858–869

    CAS  Google Scholar 

  45. Jhalani A, Sharma D, Soni SL, Sharma PK, Sharma S (2019) A comprehensive review on water-emulsified diesel fuel: chemistry, engine performance and exhaust emissions. Environ Sci Pollut R 26:4570–4587

    CAS  Google Scholar 

  46. Jiang H, Xu Z, Aluru MR, Dong L (2014) Plant chip for high-throughput phenotyping of Arabidopsis. Lab Chip 14:1281–1293

    CAS  Google Scholar 

  47. Kim HS, Weiss TL, Thapa HR, Devarenne TP, Han A (2014) A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production. Lab Chip 14:1415–1425

    CAS  Google Scholar 

  48. Kim BJ, Richter LV, Hatter N, Tung C, Ahner BA, Wu M (2015a) An array microhabitat system for high throughput studies of microalgal growth under controlled nutrient gradients. Lab Chip 15:3687–3694

    CAS  Google Scholar 

  49. Kim Y, Jeong S, Kim B, Kim D, Cho Y (2015b) Rapid and automated quantification of microalgal lipids on a spinning disc. Anal Chem 87:7865–7871

    CAS  Google Scholar 

  50. Kim HS, Guzman AR, Thapa HR, Devarenne TP, Han A (2016) A droplet microfluidics platform for rapid microalgal growth and oil production analysis. Biotechnol Bioeng 113:1691–1701

    CAS  Google Scholar 

  51. Kim JYH, Kwak HS, Sung YJ, Hong IC, Min EH, Lim HS, Lee JH, Sang YL, Sang JS (2016b) Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci Rep-Uk 6:21155

    CAS  Google Scholar 

  52. Kim HS, Devarenne TP, Han A (2017a) Microfluidic systems for microalgal biotechnology: a review. Algal Res 30:149–161

    Google Scholar 

  53. Kim HS, Waqued SC, Nodurft DT, Devarenne TP, Yakovlev VV, Han A (2017b) Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics. Analyst 142:1054–1060

    CAS  Google Scholar 

  54. Kobayashi J, Mori Y, Kobayashi S (2006) Multiphase organic synthesis in microchannel reactors. Chem-Asian J 1:22–35

    CAS  Google Scholar 

  55. Kose O, Tuter M, Ayse Aksoy H (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83:125–129

    CAS  Google Scholar 

  56. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8

    CAS  Google Scholar 

  57. Kwak HS, Kim JYH, Sang JS (2015) A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans. Bioprocess Biosyst Eng 38:2035–2043

    CAS  Google Scholar 

  58. Kwak HS, Kim JYH, Woo HM, Jin E, Min BK, Sim SJ (2016a) Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Res 19:215–224

    Google Scholar 

  59. Kwak HS, Kim JYH, Na SC, Jeon NL, Sim SJ (2016b) Multiplex microfluidic system integrating sequential operations of microalgal lipid production. Analyst 141:1218–1225

    CAS  Google Scholar 

  60. Lasic DD, Papahadjopoulos D (1995) Liposomes revisited. Science 267:1275–1276

    CAS  Google Scholar 

  61. Lee JS, Chung D, Lee HG (2008) Preparation and characterization of calcium pectinate gel beads entrapping catechin-loaded liposomes. Int J Biol Macromol 42:178–184

    CAS  Google Scholar 

  62. Lee J, Lee MG, Jung C, Park Y, Song C, Choi MC, Park HG, Park J (2013) High-throughput nanoscale lipid vesicle synthesis in a semicircular contraction-expansion array microchannel. Biochip J 7:210–217

    CAS  Google Scholar 

  63. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    CAS  Google Scholar 

  64. Li T, Yang S, Liu W, Liu C, Liu W, Zheng H, Zhou W, Tong G (2015) Preparation and characterization of nanoscale complex liposomes containing medium-chain fatty acids and vitamin C. Int J Food Prop 18:113–124

    CAS  Google Scholar 

  65. Li Y, Lee RJ, Huang X, Li Y, Lv B, Wang T, Qi Y, Hao F, Lu J, Meng Q (2016) Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery. Nanomed-Nanotechnol 13:371–381

    Google Scholar 

  66. Lim HS, Kim JYH, Kwak HS, Sim SJ (2013) Microalgal culture, lipid production and extraction using an integrated microfluidic system. Acta Physica Polonica B Proceedings Supplement 5:3150–3165

    Google Scholar 

  67. Lim HS, Kim JYH, Kwak HS, Sim SJ (2014) Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction. Anal Chem 86:8585–8592

    CAS  Google Scholar 

  68. Liu W, Liu WL, Liu CM, Liu JH, Yang SB, Zheng HJ, Lei HW, Ruan R, Li T, Tu ZC (2011) Medium-chain fatty acid nanoliposomes for easy energy supply. Nutrition 27:700–706

    Google Scholar 

  69. Liu X, Wang XD, Pang N, Zhu WJ, Zhao XY, Wang FQ, Wu FA, Wang J (2015) APA-style human milk fat analogue from silkworm pupae oil: enzymatic production and improving storage stability using alkyl caffeates. Sci Rep-Uk 5:17909

  70. Liu J, Cao X, Chu Y, Zhao Y, Wu P, Xue S (2018) Novel approach for the direct transesterification of fresh microalgal cells via micro-reactor. Algal Res 32:38–43

    Google Scholar 

  71. Ma Y, Gao Z, Wang Q, Liu Y (2018) Biodiesels from microbial oils: opportunity and challenges. Bioresour Technol 263:631–641

    CAS  Google Scholar 

  72. Mahesh K, Vaidya S (2017) Microfluidics: a boon for biological research. Curr Sci India 112:2021–2028

    Google Scholar 

  73. Makoto T, Kei-Ichiro I, Takeshi M, Hirosuke O, Koji W, Tomohiro I, Dai K (2006) Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J Oleo Sci 56:35–42

    Google Scholar 

  74. Matsuura S, Ishii R, Itoh T, Hamakawa S, Tsunoda T, Hanaoka T, Mizukami F (2011) Immobilization of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis. Chem Eng J 167:744–749

    CAS  Google Scholar 

  75. Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification - a review. Renew Sust Energ Rev 10:248–268

    CAS  Google Scholar 

  76. Miled A, Greener J (2017) Recent advancements towards full-system microfluidics. Sensors-Basel 17:1707

    Google Scholar 

  77. Min B, Cordray JC, Dong UA (2011) Antioxidant effect of fractions from chicken breast and beef loin homogenates in phospholipid liposome systems. Food Chem 128:299–307

    CAS  Google Scholar 

  78. Mo Y, Jensen KF (2016) A miniature CSTR cascade for continuous flow of reactions containing solids. React Chem Eng 1:501–507

    CAS  Google Scholar 

  79. Morales A, Lee H, Goñi FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923–939

    CAS  Google Scholar 

  80. Mugo SM, Ayton K (2013) Lipase immobilized methacrylate polymer monolith microreactor for lipid transformations and online analytics. J Am Oil Chem Soc 90:65–72

    CAS  Google Scholar 

  81. Mugo SM, Tiedemann K (2017) Candida antarctica B lipase-loaded microreactor for the automated derivatization of lipids. Anal Lett 50:1410–1421

    CAS  Google Scholar 

  82. Nasir NF, Latif NA, Bakar SASA, Rahman MNA, Selamat SN, Nasharudin NN (2017) Determination of physiochemical properties of palm oil methyl ester catalyzed by waste cockle shells. AIP Conference Proceedings 1831:145–156

    Google Scholar 

  83. Nguyen B, Graham PJ, Sinton D (2016) Dual gradients of light intensity and nutrient concentration for full-factorial mapping of photosynthetic productivity. Lab Chip 16:2785–2790

    CAS  Google Scholar 

  84. Nongonierma AB, Abrlova M, Kilcawley KN (2013) Encapsulation of a lactic acid bacteria cell-free extract in liposomes and use in cheddar cheese ripening. Foods 2:100–119

    Google Scholar 

  85. Paik S, Sim S, Jeon NL (2017) Microfluidic perfusion bioreactor for optimization of microalgal lipid productivity. Bioresour Technol 233:433–437

    CAS  Google Scholar 

  86. Pan J, Stephenson AL, Kazamia E, Huck WTS, Dennis JS, Smith AG, Abell C (2011) Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Integr Biol-Uk 3:1043–1051

    Google Scholar 

  87. Park JW, Na SC, Thanh QN, Paik S, Kang M, Hong D, Choi IS, Lee J, Jeon NL (2015) Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research. Biotechnol Bioeng 112:494–501

    CAS  Google Scholar 

  88. Patil PD, Deng S (2009) Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88:1302–1306

    CAS  Google Scholar 

  89. Perozziello G, Candeloro P, De Grazia A, Esposito F, Allione M, Coluccio ML, Tallerico R, Valpapuram I, Tirinato L, Das G, Giugni A, Torre B, Veltri P, Kruhne U, Della VG, Di Fabrizio E (2016) Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers. Opt Express 24:A180–A190

    Google Scholar 

  90. Quake SR, Squires TM (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Google Scholar 

  91. Rahimi M, Aghel B, Alitabar M, Sepahvand A, Ghasempour HR (2014) Optimization of biodiesel production from soybean oil in a microreactor. Energ Convers Manage 79:599–605

    CAS  Google Scholar 

  92. Rana NA, Singh A, Poeta MD, Hannun YA (2015) Qualitative and quantitative measurements of sphingolipids by mass spectrometry. Springer International Publishing, 313–338 pp

  93. Ribeiro MDMM, Ming CC, Lopes TIB, Grimaldi R, Marsaioli AJ, Gonçalves LAG (2018) Enzymatic synthesis of structured lipids from liquid and fully hydrogenated high oleic sunflower oil. Int J Food Prop 21:702–716

    CAS  Google Scholar 

  94. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28:318–323

    CAS  Google Scholar 

  95. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    CAS  Google Scholar 

  96. Šalić A, Tušek AJ, Sander A, Zelić B (2018) Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. New Biotechnol 47:80–88

    Google Scholar 

  97. Sanchez W, Egea E (2018) Health and environmental risks associated with emerging pollutants and novel green processes. Environ Sci Pollut R 25:6085–6086

    Google Scholar 

  98. Sánchez M, Aranda FJ, Teruel JA, Ortiz A (2011) New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem Phys Lipids 164:16–23

    Google Scholar 

  99. Santana HS, Lopes MGM, Silva JL, Taranto OP (2018) Application of microfluidics in process intensification. Int J Chem React Eng 16. https://doi.org/10.1515/ijcre-2018-0038

  100. Schröter S, Stahmann K, Schnitzlein K (2015) Impact of mass transport on the enzymatic hydrolysis of rapeseed oil. Appl Microbiol Biotechnol 99:293–300

    Google Scholar 

  101. Shao J, Wu L, Wu J, Zheng Y, Zhao H, Jin Q, Zhao J (2009) Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9:3118–3125

    CAS  Google Scholar 

  102. Shi XY, Li TY, Wang M, Wu WW, Li WJ, Wu QY, Wu FA, Wang J (2017) Converting defatted silkworm pupae by Yarrowia lipolytica for enhanced lipid production. Eur J Lipid Sci Technol:119

  103. Shih SCC, Mufti NS, Chamberlain MD, Kim J, Wheeler AR (2014) A droplet-based screen for wavelength-dependent lipid production in algae. Energy Environ Sci 7:2366–2375

    CAS  Google Scholar 

  104. Singh A, He B, Thompson J, Van Gerpen J (2006) Process optimization of biodiesel production using alkaline catalysts. Appl Eng Agric 22:597–600

    Google Scholar 

  105. Snead DR, Jamison TF (2015) A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. Angew Chem Int Ed 54:983–987

    CAS  Google Scholar 

  106. Soriano NU Jr, Venditti R, Argyropoulos DS (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88:560–565

    CAS  Google Scholar 

  107. Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20:365–389

    CAS  Google Scholar 

  108. Subroto E, Tensiska T, Indiarto R, Hidayat C (2013) The effect of substrat ratio fish oil and milk fat on synthesis of structured lipid by enzimatic transesterification. Int J Adv Sci, Eng Info Tech 3:117–121

    Google Scholar 

  109. Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M (2000) Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J Colloid Interface Sci 227:95–103

    CAS  Google Scholar 

  110. Sun C, Hsiao T (2015) Analyzing mixing inhomogeneity in a microfluidic device by microscale Schlieren technique. Jove-J Vis Exp 100:e52915

    Google Scholar 

  111. Toh AGG, Wang ZP, Yang C, Nguyen N (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18

    Google Scholar 

  112. Tran D, Chang J, Lee D (2017) Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Appl Energy 185:376–409

    CAS  Google Scholar 

  113. Van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    Google Scholar 

  114. Veljkovic VB, Bankovic-Ilic IB, Stamenkovic OS (2015) Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renew Sust Energ Rev 49:500–516

    CAS  Google Scholar 

  115. Wang J, Wang XD, Zhao XY, Liu X, Dong T, Wu FA (2015) From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. Bioresour Technol 184:405–414

    CAS  Google Scholar 

  116. Wang J, Liu X, Wang XD, Dong T, Zhao XY, Zhu D, Mei YY, Wu GH (2016) Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase. Bioresour Technol 220:132–141

    CAS  Google Scholar 

  117. Wei L, Jianhua L, Mingyong X, Chengmei L, Weilin L, Jie W (2009) Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai). J Agric Food Chem 57:5376–5380

    Google Scholar 

  118. Weng L, Ellett F, Edd J, Wong KHK, Uygun K, Irimia D, Stott SL, Toner M (2017) A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. Lab Chip 17:4077–4088

    CAS  Google Scholar 

  119. Xu Z, Jiang H, Sahu BB, Kambakam S, Singh P, Wang X, Wang Q, Bhattacharyya MK, Dong L (2016) Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput (vol 10, 034108, 2016). Biomicrofluidics 10:1154–1163

    Google Scholar 

  120. Xu Z, Wang Y, Chen Y, Spalding MH, Dong L (2017) Microfluidic chip for automated screening of carbon dioxide conditions for microalgal cell growth. Biomicrofluidics 11:64104

    Google Scholar 

  121. Xue S, Chi Z, Zhang Y, Li Y, Liu G, Jiang H, Hu Z, Chi Z (2018) Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol 38:1049–1060

    CAS  Google Scholar 

  122. Yadav GD, Devi KM (2004) Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci 59:373–383

    CAS  Google Scholar 

  123. Yamaguchi I, Akoh CC, Lai OM (2004) Modification of fish oil by Lipozyme TL IM to produce structured lipid. J Food Lipids 11:65–73

    CAS  Google Scholar 

  124. Yang Y, Wang C (2016) Review of microfluidic photobioreactor technology for metabolic engineering and synthetic biology of cyanobacteria and microalgae. Micromachines-Basel 7:185

    CAS  Google Scholar 

  125. Yokomichi H, Yasumasu T, Nakamura K, Kawahara Y (1992): Immobilized lipolytic enzyme for esterification and interesterification. US

  126. Young E, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83:1408–1417

    CAS  Google Scholar 

  127. Zhao XY, Wang XD, Liu X, Zhu WJ, Mei YY, Li WW, Wang J (2015) Structured lipids enriched with unsaturated fatty acids produced by enzymatic acidolysis of silkworm pupae oil using oleic acid. Eur J Lipid Sci Technol 117:879–889

    CAS  Google Scholar 

  128. Zheng D, Wang S, Qiu S, Lin J, Diao X (2018) Synthesis of butyl oleate catalyzed by cross-linked enzyme aggregates with magnetic nanoparticles in rotating magneto-micro-reactor. J Biotechnol 281:123–129

    CAS  Google Scholar 

  129. Zizzari A, Bianco M, Carbone L, Perrone E, Amato F, Maruccio G, Rendina F, Arima V (2017) Continuous-flow production of injectable liposomes via a microfluidic approach. Materials 10:1411

    Google Scholar 

  130. Žnidaršič-Plazl P, Plazl I (2009) Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor. Process Biochem 44:1115–1121

    Google Scholar 

  131. Zou LQ, Liu W, Liu WL, Liang RH, Li T, Liu CM, Cao YL, Niu J, Liu Z (2014) Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J Agric Food Chem 62:934–941

    CAS  Google Scholar 

  132. Zu Heringdorf DM, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. BBA-Biomembranes 1768:923–940

    Google Scholar 

Download references

Funding

This study was financially supported by the Key Research and Development Program (Modern Agriculture) of Jiangsu Province (BE2017322), the Key Research and Development Program (Modern Agriculture) of Zhenjiang City (NY2017010), the Six Talent Peaks Project of Jiangsu Province (2015-NY-018), the 333 High-level Talent Training Project of Jiangsu Province (Year 2018), the Shen Lan Young scholars program of Jiangsu University of Science and Technology (Year 2015), and the Postgraduate Research and Practice Innovation Programs of Jiangsu Province (KYCX18_2305, SJKY19_2670).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jin-Zheng Wang and Lin-Lin Zhu should be two co-first authors

Responsible editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, JZ., Zhu, LL., Zhang, F. et al. Microfluidic tools for lipid production and modification: a review. Environ Sci Pollut Res 26, 35482–35496 (2019). https://doi.org/10.1007/s11356-019-05833-4

Download citation

Keywords

  • Bioenergy
  • Lipid-producing microorganism
  • Discovery
  • Culturing
  • Harvesting
  • Separating
  • Monitoring