Skip to main content
Log in

Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The tailings produce acid mine drainage (AMD) due to sulfide minerals, especially pyrite oxidation. AMD has caused serious pollution to the surrounding aquatic and terrestrial ecosystems because of its famous low pH value and high metal and sulfate concentration, which is an urgent environmental problem faced by the world’s ore mining industry. Here, we show that silicic protective surface films can suppress the oxidation of pyrite-bearing tailings for AMD control at-source without pre-oxidation of pyrite and solution pH adjuster and buffer. We found that the silicic protective surface films formed by calcium silicate can inhibit the oxidation of pyrite-bearing tailings and reduce the production of AMD through chemical leaching tests. Fourier transform infrared (FTIR) analyses and scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS) confirmed the presence of silicic protective surface films of calcium silicate on the surface of pyrite-bearing tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguiar AO, Andrade LH, Ricci BC, Pires WL, Miranda GA, Amaral MCS (2016) Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Sep Purif Technol 170:360–369

    Article  CAS  Google Scholar 

  • Bonnissel-Gissinger P, Alnot M, Ehrhard J, Behra P (1998) Surface oxidation of pyrite as a function of pH. Environ Sci Technol 32:2839–2845

    Article  CAS  Google Scholar 

  • Chen YW, Li YR, Cai MF, Belzile N, Dang Z (2006) Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Miner Eng 19(1):19–27

    Article  CAS  Google Scholar 

  • Cornell RM, Giovanoli R, Schneider W (1989) Review of the hydrolysis of iron(III) and the crystallization of amorphous iron(III) hydroxide hydrate. J Chem Technol Biotechnol 46:115–134

    Article  CAS  Google Scholar 

  • Demers I, Mbonimpa M, Benzaazoua M, Bouda M, Awoh S, Lortie S, Gagnon M (2017) Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: laboratory column tests and intermediate scale field tests. Miner Eng 107:43–52

    Article  CAS  Google Scholar 

  • Demers I, Bouda M, Mbonimpa M, Benzaazoua M, Bois D, Gagnon M (2015) Valorization of acid mine drainage treatment sludge as remediation component to control acid generation from mine wastes, part 2: field experimentation. Miner Eng 76:117–125

    Article  CAS  Google Scholar 

  • Elsetinow AR, Schoonen MAA, Strongin DR (2001) Aqueous geochemical and surface science investigation of the effect of phosphate on pyrite oxidation. Environ Sci Technol 35(11):2252–2257

    Article  CAS  Google Scholar 

  • Evangelou VP (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecol Eng 17(2–3):165–178

    Article  Google Scholar 

  • Fan R, Short M, Zeng SJ, Qian GJ, Li J, Schumann R, Kawashima N, Smart RSC, Gerson AR (2017) The formation of silicate-stabilised passivating layers on pyrite for reduced acid rock drainage. Environ Sci Technol 51(19):11317–11325

    Article  CAS  Google Scholar 

  • Galhardi JA, Bonotto DM (2016) Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environ Sci Pollut Res 23(18):18911–18927

    Article  CAS  Google Scholar 

  • Georgopoulou ZJ, Fytas K, Soto H, Evangelou B (1996) Feasibility and cost of creating an iron-phosphate coating on pyrrhotite to prevent oxidation. Environ Geol 28(2):61–69

    Article  CAS  Google Scholar 

  • Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl Geochem 24(9):1626–1634

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14

    Article  CAS  Google Scholar 

  • Jolsterå R, Gunneriusson L, Forsling W (2010) Adsorption and surface complex modeling of silicates on maghemite in aqueous suspensions. J Colloid Interface Sci 342:493–498

    Article  CAS  Google Scholar 

  • Kang CU, Jeon BH, Park SS, Kang JS, Kim KH, Kim DK, Choi UK, Kim SJ (2016) Inhibition of pyrite oxidation by surface coating: a long-term field study. Environ Geochem Health 38(5):1137–1146

    Article  CAS  Google Scholar 

  • Kargbo DM, Chatterjee S (2005) Stability of silicate coatings on pyrite surfaces in a low pH environment. J Environ Eng 131(9):1340–1349

    Article  CAS  Google Scholar 

  • Kefeni KK, Msagati TAM, Mamba BB (2017) Acid mine drainage: prevention, treatment options, and resource recovery: a review. J Clean Prod 151:475–493

    Article  CAS  Google Scholar 

  • Kollias K, Mylona E, Papassiopi N, Xenidis A (2018) Development of silica protective layer on pyrite surface: a column study. Environ Sci Pollut Res 25:26780–26792

    Article  CAS  Google Scholar 

  • Lan Y, Huang X, Deng B (2002) Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Arch Environ Contam Toxicol 43(2):168–174

    Article  CAS  Google Scholar 

  • Liu Y, Dang Z, Xu Y, Xu TY (2013) Pyrite passivation by triethylenetetramine: an electrochemical study. J Anal Methods Chem:1–8

  • Lu JM, Alakangas L, Wanhainen C (2014) Metal mobilization under alkaline conditions in ash-covered tailings. J Environ Manag 139:38–49

    Article  CAS  Google Scholar 

  • Luptakova A, Balintova M, Jencarova J, Macingova E, Prascakova M (2010) Metals recovery from acid mine drainage. Nova Biotechnologica 10(1):23–32

    Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, an nanocrystalline material. Science 316(5832):1726–1729

    Article  CAS  Google Scholar 

  • Nicholson RV, Gillham RW, Cherry JA, Reardon EJ (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Can Geotech J 26(1):1–8

    Article  CAS  Google Scholar 

  • Parbhakar-Fox A, Lottermoser BG (2015) A critical review of acid rock drainage prediction methods and practices. Miner Eng 82:107–124

    Article  CAS  Google Scholar 

  • Peppas A, Komnitsas K, Halikia I (2000) Use of organic covers for acid mine drainage control. Miner Eng 13(5):563–574

    Article  CAS  Google Scholar 

  • Sarmiento AM, DelValls A, Nieto JM, Salamanca MJ, Caraballo MA (2011) Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sci Total Environ 409(22):4763–4771

    Article  CAS  Google Scholar 

  • Schwertmann U, Fischer WR (1973) Natural “amorphous” ferric hydroxide. Geoderma 10(3):237–247

    Article  CAS  Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science. 167(3921):1121–1123

    Article  CAS  Google Scholar 

  • Smart RSC, Miller SD, Stewart WS, Rusdinar Y, Schumann RE, Kawashima N, Li J (2010) In situ calcite formation in limestone-saturated water leaching of acid rock waste. Sci Total Environ 408(16):3392–3402

    Article  CAS  Google Scholar 

  • Villain L, Alakangas L, Öhlander B (2013) The effects of backfilling and sealing the waste rock on water quality at the Kimheden open-pit mine, northern Sweden. J Geochem Explor 134:99–110

    Article  CAS  Google Scholar 

  • Vandiviere MM, Evangelou VP (1998) Comparative testing between conventional and microencapsulation approaches in controlling pyrite oxidation. J Geochem Explor 64(1–3):161–176

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the financial support of the Project Funded by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, and the scholarship support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuncai Wang.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhao, Y. & Li, S. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source. Environ Sci Pollut Res 26, 25725–25732 (2019). https://doi.org/10.1007/s11356-019-05803-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05803-w

Keywords

Navigation