Skip to main content
Log in

A passively immobilized novel biomagsorbent for the effective biosorptive treatment of dye contamination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new magnetic bio-based composite was designed by the magnetic modification of passively immobilized fungal cells. It was utilized for biosorptive decolorization of reactive dye-contaminated aquatic media. As a greener option, waste tea leaf tissues were used for the first time as an immobilization matrix for microbial cells. Immobilized magnetic cells (biomagsorbent) could be effectively used in both batch and dynamic flow mode treatment processes and real environmental application. Rapid equilibrium and high decolorization yields were observed for the target dye (reactive violet 1). The temperature did not significantly affect the process. Langmuir and the pseudo-second-order models could be better used to fit the process equilibrium and kinetics, respectively. Maximum monolayer sorption capacity was 152.88 mg g−1. High biosorption and desorption yields for 50 consecutive dynamic flow decolorization cycles were recorded as striking results. The breakthrough time was 3420 min. Simulated and industrial water treatment performance of biomagsorbent was found to be more than 90%. The mechanism was evaluated by IR and zeta potential analysis. The magnetic character of the sorbent provided good mechanical durability, easy separation, and excellent regeneration ability. Consequently, this work provides new insight into scalar enhancement of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akar T, Celik S (2011) Efficient biosorption of a reactive dye from contaminated media by Neurospora sitophila cells—Zea mays silk tissue biomass system. J Chem Technol Biotechnol 86:1332–1341

    Article  CAS  Google Scholar 

  • Akar T, Ozkara E, Celik S, Turkyilmaz S, Akar ST (2013) Chemical modification of a plant origin biomass using cationic surfactant ABDAC and the biosorptive decolorization of RR45 containing solutions. Colloids Surf B 101:307–314

    Article  CAS  Google Scholar 

  • Akar T, Uzun C, Çelik S, Akar ST (2018) Biosorption of Basic Blue 7 by fungal cells immobilized on the green-type biomatrix of Phragmites australis spongy tissue. Int J Phytorem 20:145–152

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Angelova R, Baldikova E, Pospiskova K, Maderova Z, Safarikova M, Safarik I (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod 137:189–194

    Article  CAS  Google Scholar 

  • Arıca MY, Bayramoǧlu G, Yılmaz M, Bektaş S, Genç Ö (2004) Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazard Mater 109:191–199

    Article  CAS  Google Scholar 

  • Balea A, Concepción Monte M, de la Fuente E, Negro C, Blanco Á (2017) Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters. Environ Sci Pollut Res 24:5049–5059

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Ozalp VC, Arıca MY (2017) Removal of Disperse Red 60 dye from aqueous solution using free and composite fungal biomass of Lentinus concinnus. Water Sci Technol 75:366–377

    Article  CAS  Google Scholar 

  • Bulgariu L, Escudero LB, Bello OS, Iqbal M, Nisar J, Adegoke KA, Alakhras F, Kornaros M, Anastopoulos I (2019) The utilization of leaf-based adsorbents for dyes removal: a review. J Mol Liq 276:728–747

    Article  CAS  Google Scholar 

  • Cardoso NF, Lima EC, Pinto IS, Amavisca CV, Royer B, Pinto RB, Alencar WS, Pereira SFP (2011) Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J Environ Manag 92:1237–1247

    Article  CAS  Google Scholar 

  • Dalvand A, Nabizadeh R, Reza Ganjali M, Khoobi M, Nazmara S, Hossein Mahvi A (2016) Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater 404:179–189

    Article  CAS  Google Scholar 

  • Dubinin M, Radushkevich L (1947) Evaluation of microporous materials with a new isotherm. Dokl Akad Nauk SSSR:331–334

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  Google Scholar 

  • Fontana KB, Chaves ES, Sanchez JDS, Watanabe ERLR, Pietrobelli JMTA, Lenzi GG (2016) Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies. Ecotox Environ Safe 124:329–336

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Über Die Adsorption in Lösungen. Zeitschrift Fur Phys Chem 57:385–470

    CAS  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, T. V (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Ind Eng Chem Fundam 5:212–223

    Article  CAS  Google Scholar 

  • Hao OJ, Kim H, Chiang P-C (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • Hao Z, Yi Z, Bowen C, Yaxing L, Sheng Z (2019) Preparing γ-Cyclodextrin-immobilized starch and the study of its removal properties to dyestuff from wastewater. Pol J Environ Stud 28:1701–1711

    Article  Google Scholar 

  • Ho YS, McKay G (1999): Pseudo-second order model for sorption processes. Process Biochem34, 451–465

  • Juchen PT, Piffer HH, Veit MT, da Cunha Gonçalves G, Palácio SM, Zanette JC (2018) Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies. J Environ Chem Eng 6:7111–7118

    Article  CAS  Google Scholar 

  • Kadimpati KK (2017) Design of hybrid PVA–CA–Jania rubens biomatrix for removal of lead. Int J Phytorem 19:183–190

    Article  CAS  Google Scholar 

  • Kapoor A, Virarghavan T (1997) Fungi as biosorbents. In: Wase D (ed) Biosorbents for metal ions. CRC press, London, pp 67–85

    Google Scholar 

  • Karagöz R, Tunali Akar S, Turkyilmaz S, Celik S, Akar T (2018) Process design and potential use of a regenerable biomagsorbent for effective decolorization process. J Taiwan Inst Chem Eng 93:554–565

    Article  CAS  Google Scholar 

  • Katırcıoğlu H, Aslım B, Rehber Türker A, Atıcı T, Beyatlı Y (2008) Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Bioresour Technol 99:4185–4191

    Article  CAS  Google Scholar 

  • Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod 87:50–57

    Article  CAS  Google Scholar 

  • Kordialik-Bogacka E (2014) Saccharomyces pastorianus immobilized on brewer’s spent grain in continuous system for lead ion biosorption. Inter Biodeter Biodegr 96:191–197

    Article  CAS  Google Scholar 

  • Lagergren S (1989) Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li C, Wang X, Meng D, Zhou L (2018) Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int J Biol Macromol 107:1871–1878

    Article  CAS  Google Scholar 

  • Li H, Li Z, Liu T, Xiao X, Peng Z, Deng L (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresour Technol 99:6271–6279

    Article  CAS  Google Scholar 

  • Li W, Mu B, Yang Y (2019) Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour Technol 277:157–170

    Article  CAS  Google Scholar 

  • Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521

    Article  CAS  Google Scholar 

  • Mullerova S, Baldikova E, Prochazkova J, Pospiskova K, Safarik I (2019) Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal. Mater Chem Phys 225:174–180

    Article  CAS  Google Scholar 

  • Panneerselvam P, Morad N, Tan KA (2011) Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J Hazard Mater 186:160–168

    Article  CAS  Google Scholar 

  • Rangabhashiam S, Lata S, P B (2018) Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces 10:197–215

    Article  CAS  Google Scholar 

  • Sadaf S, Bhatti HN (2014) Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. J Taiwan Inst Chem Eng 45:541–553

    Article  CAS  Google Scholar 

  • Sharma S, Hasan A, Kumar N, Pandey LM (2018) Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environ Sci Pollut Res 25:21605–21615

    Article  CAS  Google Scholar 

  • Shojaosadati SA, Faraidouni R, Madadi-Nouei A, Mohamadpour I (1999) Protein enrichment of lignocellulosic substrates by solid state fermentation using Neurospora sitophila. Resour Conserv Recycl 27:73–87

    Article  Google Scholar 

  • Synaridou M-ES, Sakkas VA, Stalikas CD, Albanis TA (2014) Evaluation of magnetic nanoparticles to serve as solid-phase extraction sorbents for the determination of endocrine disruptors in milk samples by gas chromatography mass spectrometry. J Chromatography A 1348:71–79

    Article  CAS  Google Scholar 

  • Tavlieva MP, Genieva SD, Georgieva VG, Vlaev LT (2013) Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. J Colloid Interface Sci 409:112–122

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Rao NC, Sarma PN (2007) Simulated acid azo dye (acid black 210) wastewater treatment by periodic discontinuous batch mode operation under anoxic–aerobic–anoxic microenvironment conditions. Ecol Eng 31:242–250

    Article  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Wang G, Chen Y, Xu G, Pei Y (2019) Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Int J Biol Macromol 129:198–206

    Article  CAS  Google Scholar 

  • Weber JWJ, Morriss JC (1963) Kinetics of adsorption on carbon from solution. J Sanitary Eng Div Am Soc Civ Eng 89:31–39

    Google Scholar 

  • Wen X, Du C, Zeng G, Huang D, Zhang J, Yin L, Tan S, Huang L, Chen H, Yu G, Hu X, Lai C, Xu P, Wan J (2018) A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater. Chemosphere 200:173–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Akar.

Additional information

Responsible editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divriklioglu, M., Akar, S.T. & Akar, T. A passively immobilized novel biomagsorbent for the effective biosorptive treatment of dye contamination. Environ Sci Pollut Res 26, 25834–25843 (2019). https://doi.org/10.1007/s11356-019-05716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05716-8

Keywords

Navigation