Advertisement

Prenatal and childhood exposure to chlordecone and sex-typed toy preference of 7-year-old Guadeloupean children

  • Sylvaine CordierEmail author
  • Nadine Forget-Dubois
  • Mireille Desrochers-Couture
  • Florence Rouget
  • Leah Michineau
  • Christine Monfort
  • Jean Pierre Thome
  • Philippe Kadhel
  • Luc Multigner
  • Gina Muckle
Environmental and human health issues related to long term contamination by chlordecone in the French West Indies
  • 33 Downloads

Abstract

Chlordecone was used intensively as an insecticide in the French West Indies. Because of its high persistence, the resulting contamination of food and water has led to chronic exposure of the general population as evidenced by its presence in the blood of people of Guadeloupe, in particular in pregnant women and newborns, and in maternal breast milk. Chlordecone is recognized as a reproductive and developmental toxicant, is neurotoxic and carcinogenic in rodents, and is considered as an endocrine-disrupting compound with well-established estrogenic and progestogenic properties both in vitro and in vivo. The question arises of its potential consequences on child neurodevelopment following prenatal and childhood exposure, in particular on behavioral sexual dimorphism in childhood. We followed 116 children from the TIMOUN mother–child cohort study in Guadeloupe, who were examined at age 7. These children were invited to participate in a 7-min structured play session in which they could choose between different toys considered as feminine, masculine, or neutral. The play session was video recorded, and the percentage of the time spent playing with feminine or masculine toys was calculated. We estimated associations between playtime and prenatal exposure to chlordecone (assessed by concentration in cord blood) or childhood exposure (determined from concentrations in child blood obtained at the 7-year follow-up), taking into account confounders and co-exposures to other environmental chemicals. We used a two-group regression model to take into account sex differences in play behavior. Our results do not indicate any modification in sex-typed toy preference among 7-year-old children in relation with either prenatal or childhood exposure to chlordecone.

Keywords

Child development Sex-typed play behavior Chlordecone Endocrine-disrupting chemicals French West Indies Insecticides Organochlorine 

Notes

Acknowledgments

We thank Pierrich Plusquellec for his help in the design of the play situation.

Funding information

This work was supported by grants from the French General Health Directorate (DGS RMC11129NNA).

References

  1. Alexander GM, Wilcox T, Woods R (2009) Sex differences in infants’ visual interest in toys. Arch Sex Behav 38:427–433.  https://doi.org/10.1007/s10508-008-9430-1 CrossRefGoogle Scholar
  2. Bell MR (2014) Endocrine-disrupting actions of PCBs on brain development and social and reproductive behaviors. Curr Opin Pharmacol 19:134–144.  https://doi.org/10.1016/j.coph.2014.09.020 CrossRefGoogle Scholar
  3. Bernert JT, Turner WE, Patterson DG, Needham LL (2007) Calculation of serum “total lipid” concentrations for the adjustment of persistent organohalogen toxicant measurements in human samples. Chemosphere 68:824–831.  https://doi.org/10.1016/j.chemosphere.2007.02.043 CrossRefGoogle Scholar
  4. Birke LI, Sadler D (1983) Progestin-induced changes in play behaviour of the prepubertal rat. Physiol Behav 30:341–347.  https://doi.org/10.1016/0031-9384(83)90136-1 CrossRefGoogle Scholar
  5. Birke LI, Sadler D (1984) Modification of juvenile play and other social behaviour in the rat by neonatal progestins: further studies. Physiol Behav 33:217–219.  https://doi.org/10.1016/0031-9384(84)90102-1 CrossRefGoogle Scholar
  6. Boucher O, Simard MN, Muckle G, Rouget F, Kadhel P, Bataille H, Chajès V, Dallaire R, Monfort C, Thomé JP, Multigner L, Cordier S (2013) Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology 35:162–168.  https://doi.org/10.1016/j.neuro.2013.01.007 CrossRefGoogle Scholar
  7. Caldwell BM, Bradley RH (2001) HOME inventory and administration manual, 3rd edn. University of Arkansas for Medical Sciences and University of Arkansas at Little RockGoogle Scholar
  8. Cannon SB, Veazey JM, Jackson et al (1978) Epidemic kepone poisoning in chemical workers. Am J Epidemiol 107:529–537.  https://doi.org/10.1093/oxfordjournals.aje.a112572 CrossRefGoogle Scholar
  9. Chajes V, Thiebaut ACM, Rotival M, Gauthier E, Maillard V, Boutron-Ruault MC, Joulin V, Lenoir GM, Clavel-Chapelon F (2008) Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 167:1312–1320.  https://doi.org/10.1093/aje/kwn069 CrossRefGoogle Scholar
  10. Collaer ML, Hines M (1995) Human behavioral sex differences: a role for gonadal hormones during early development? Psychol Bull 118:55–107.  https://doi.org/10.1037/0033-2909.118.1.55 CrossRefGoogle Scholar
  11. Cooper JR, Vodicnik MJ, Gordon JH (1985) Effects of perinatal Kepone exposure on sexual differentiation of the rat brain. Neurotoxicology 6:183–190Google Scholar
  12. Dallaire R, Muckle G, Rouget F, Kadhel P, Bataille H, Guldner L, Seurin S, Chajès V, Monfort C, Boucher O, Pierre Thomé J, Jacobson SW, Multigner L, Cordier S (2012) Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118:79–85.  https://doi.org/10.1016/j.envres.2012.07.006 CrossRefGoogle Scholar
  13. Debier C, Pomeroy P, Dupont C, Joiris C, Comblin V, le Boulengé E, Larondelle Y, Thomé JP (2003) Quantitative dynamics of PCB transfer from mother to pup during lactation in UK grey seals Halichoerus grypus. Mar Ecol Prog Ser 247:237–248.  https://doi.org/10.3354/meps247237 CrossRefGoogle Scholar
  14. Dubuisson C, Héraud F, Leblanc J-C, Gallotti S, Flamand C, Blateau A, Quenel P, Volatier JL (2007) Impact of subsistence production on the management options to reduce the food exposure of the Martinican population to Chlordecone. Regul Toxicol Pharmacol 49:5–16.  https://doi.org/10.1016/j.yrtph.2007.04.008 CrossRefGoogle Scholar
  15. Faroon O, Kueberuwa S, Smith L, Derosa C (1995) Atsdr Evaluation of health effects of chemicals. Toxicol Ind Health 11:1–195.  https://doi.org/10.1177/074823379501100601 CrossRefGoogle Scholar
  16. Faroon O, Jones D, De Rosa C (2000) Effects of polychlorinated biphenyls on the nervous system. Toxicol Ind Health 16:305–333.  https://doi.org/10.1177/074823370001600708 CrossRefGoogle Scholar
  17. Frye C, Bo E, Calamandrei G, Calzà L, Dessì-Fulgheri F, Fernández M, Fusani L, Kah O, Kajta M, le Page Y, Patisaul HB, Venerosi A, Wojtowicz AK, Panzica GC (2012) Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 24:144–159.  https://doi.org/10.1111/j.1365-2826.2011.02229.x CrossRefGoogle Scholar
  18. Golombok S, Rust J (1993) The pre-school activities inventory: a standardized assessment of gender role in children. Psychol Assess 5:131–136.  https://doi.org/10.1037/1040-3590.5.2.131 CrossRefGoogle Scholar
  19. Guldner L, Multigner L, Héraud F, Monfort C, Pierre Thomé J, Giusti A, Kadhel P, Cordier S (2010) Pesticide exposure of pregnant women in Guadeloupe: ability of a food frequency questionnaire to estimate blood concentration of chlordecone. Environ Res 110:146–151.  https://doi.org/10.1016/j.envres.2009.10.015 CrossRefGoogle Scholar
  20. Guo YL, Lai TJ, Chen SJ, Hsu CC (1995) Gender-related decrease in Raven’s progressive matrices scores in children prenatally exposed to polychlorinated biphenyls and related contaminants. Bull Environ Contam Toxicol 55:8–13.  https://doi.org/10.1007/BF00212382 CrossRefGoogle Scholar
  21. Hammond B, Katzenellenbogen BS, Krauthammer N, McConnell J (1979) Estrogenic activity of the insecticide chlordecone (Kepone) and interaction with uterine estrogen receptors. Proc Natl Acad Sci 76:6641–6645.  https://doi.org/10.1073/pnas.76.12.6641 CrossRefGoogle Scholar
  22. Hassett JM, Siebert ER, Wallen K (2008) Sex differences in rhesus monkey toy preferences parallel those of children. Horm Behav 54:359–364.  https://doi.org/10.1016/j.yhbeh.2008.03.008 CrossRefGoogle Scholar
  23. Kadhel P, Monfort C, Costet N, Rouget F, Thomé JP, Multigner L, Cordier S (2014) Chlordecone exposure, length of gestation, and risk of preterm birth. Am J Epidemiol 179:536–544.  https://doi.org/10.1093/aje/kwt313 CrossRefGoogle Scholar
  24. Laessig SA, Auger AP, McCarthy MM, Silbergeld EK (2007) Effects of prenatal chlordecone on sexually differentiated behavior in adult rats. Neurotoxicol Teratol 29:255–263.  https://doi.org/10.1016/j.ntt.2006.10.003 CrossRefGoogle Scholar
  25. Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R (2006) Activation of α- and β-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci 79:1160–1169.  https://doi.org/10.1016/j.lfs.2006.03.023 CrossRefGoogle Scholar
  26. Little RJA (1988) A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc 83:1198–1202.  https://doi.org/10.1080/01621459.1988.10478722 CrossRefGoogle Scholar
  27. Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, Bullmore ET, Baron-Cohen S (2012) Fetal testosterone influences sexually dimorphic gray matter in the human brain. J Neurosci 32:674–680.  https://doi.org/10.1523/JNEUROSCI.4389-11.2012 CrossRefGoogle Scholar
  28. Mactutus CF, Tilson HA (1984) Neonatal chlordecone exposure impairs early learning and retention of active avoidance in the rat. Neurobehav Toxicol Teratol 6:75–83Google Scholar
  29. Mactutus CF, Tilson HA (1985) Evaluation of long-term consequences in behavioral and/or neural function following neonatal chlordecone exposure. Teratology 31:177–186.  https://doi.org/10.1002/tera.1420310202 CrossRefGoogle Scholar
  30. Mactutus CF, Unger K, Tilson HA (1982) Neonatal chlordecone exposure impairs early learning and memory in the rat on a multiple passive avoidance task. Neurotoxicology 3:27–44Google Scholar
  31. McCarthy MM, Arnold AP (2011) Reframing sexual differentiation of the brain. Nat Neurosci 14:677–683.  https://doi.org/10.1038/nn.2834 CrossRefGoogle Scholar
  32. Multigner L, Ndong JR, Giusti A, Romana M, Delacroix-Maillard H, Cordier S, Jégou B, Thome JP, Blanchet P (2010) Chlordecone exposure and risk of prostate cancer. J Clin Oncol 28:3457–3462.  https://doi.org/10.1200/JCO.2009.27.2153 CrossRefGoogle Scholar
  33. Multigner L, Kadhel P, Rouget F, Blanchet P, Cordier S (2016) Chlordecone exposure and adverse effects in French West Indies populations. Environ Sci Pollut Res Int 23:3–8.  https://doi.org/10.1007/s11356-015-4621-5 CrossRefGoogle Scholar
  34. Muthén LK, Muthén BO (1998-2017) Mplus user’s guide, 8th edn. Muthén & Muthén, Los AngelesGoogle Scholar
  35. Nordenström A, Servin A, Bohlin G, Larsson A, Wedell A (2002) Sex-typed toy play behavior correlates with the degree of prenatal androgen exposure assessed by CYP21 genotype in girls with congenital adrenal hyperplasia. J Clin Endocrinol Metab 87:5119–5124.  https://doi.org/10.1210/jc.2001-011531 CrossRefGoogle Scholar
  36. Pryor GT, Uyeno ET, Tilson HA, Mitchell CL (1983) Assessment of chemicals using a battery of neurobehavioral tests: a comparative study. Neurobehav Toxicol Teratol 5:91–117Google Scholar
  37. Raven J, Raven JC, Court JH (2003) Manual for Raven’s progressive matrices and vocabulary scales. Section 1: General Overview. Harcourt Assessment, San AntonioGoogle Scholar
  38. Rouget F, Lebreton J, Kadhel P, Monfort C, Bodeau-Livinec F, Janky E, Multigner L, Cordier S (2013) Medical and sociodemographic risk factors for preterm birth in a French Caribbean population of African descent. Matern Child Health J 17:1103–1111.  https://doi.org/10.1007/s10995-012-1112-x CrossRefGoogle Scholar
  39. Schantz SL, Moshtaghian J, Ness DK (1995) Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Toxicol Sci. 26:117–126.  https://doi.org/10.1093/toxsci/26.1.117 CrossRefGoogle Scholar
  40. Scippo ML, Argiris C, Van De Weerdt C et al (2004) Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal Bioanal Chem 378:664–669.  https://doi.org/10.1007/s00216-003-2251-0 CrossRefGoogle Scholar
  41. Servin A, Bohlin G, Berlin L (1999) Sex differences in 1-, 3-, and 5-year-olds’ toy-choice in a structured play-session. Scand J Psychol 40:43–48.  https://doi.org/10.1111/1467-9450.00096 CrossRefGoogle Scholar
  42. Seurin S, Rouget F, Reninger J-C, Gillot N, Loynet C, Cordier S, Multigner L, Leblanc JC, Volatier JL, Héraud F (2012) Dietary exposure of 18-month-old Guadeloupian toddlers to chlordecone. Regul Toxicol Pharmacol 63:471–479.  https://doi.org/10.1016/j.yrtph.2012.05.009 CrossRefGoogle Scholar
  43. Squibb R, Tilson HA (1982) Effects of gestational and perinatal exposure to chlordecone (Kepone) on the neurobehavioral development of Fischer-344 rats. Neurotoxicology 3:17–26Google Scholar
  44. Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, Sparks A, Weiss B (2010) Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl 33:259–267.  https://doi.org/10.1111/j.1365-2605.2009.01019.x CrossRefGoogle Scholar
  45. Templ M, Hron K, Filzmoser P (2011) RobCompositions: an R-package for robust statistical analysis of compositional data. In: Pawlowsky-Glahn V, Buccianti A (eds) Compositional Data Analysis. Theory and Applications. John Wiley & Sons, Chichester (UK), pp 341–355CrossRefGoogle Scholar
  46. Vonier PM, Crain DA, McLachlan JA et al (1996) Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect 104:1318–1322.  https://doi.org/10.1289/ehp.961041318 CrossRefGoogle Scholar
  47. Vreugdenhil HJI, Slijper FME, Mulder PGH, Weisglas-Kuperus N (2002) Effects of perinatal exposure to PCBs and dioxins on play behavior in Dutch children at school age. Environ Health Perspect 110:593–598CrossRefGoogle Scholar
  48. Winneke G, Ranft U, Wittsiepe J, Kasper-Sonnenberg M, Fürst P, Krämer U, Seitner G, Wilhelm M (2014) Behavioral sexual dimorphism in school-age children and early developmental exposure to dioxins and PCBs: a follow-up study of the Duisburg cohort. Environ Health Perspect 122:292–298.  https://doi.org/10.1289/ehp.1306533 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sylvaine Cordier
    • 1
    Email author
  • Nadine Forget-Dubois
    • 2
  • Mireille Desrochers-Couture
    • 2
  • Florence Rouget
    • 3
  • Leah Michineau
    • 1
  • Christine Monfort
    • 1
  • Jean Pierre Thome
    • 4
  • Philippe Kadhel
    • 5
  • Luc Multigner
    • 1
  • Gina Muckle
    • 2
  1. 1.Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085RennesFrance
  2. 2.Centre de recherche du CHU de Québec-Université Laval and École de psychologieUniversité LavalQuébecCanada
  3. 3.CHU de Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085RennesFrance
  4. 4.LEAE-CART (Laboratoire d’Ecologie Animale et d’Ecotoxicologie-Centre de Recherche Analytique et Technologique)Université de LiègeLiègeBelgium
  5. 5.CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085Pointe-à-PitreFrance

Personalised recommendations