Skip to main content
Log in

A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In many years, the nickel electroplating technique has been applied to coat nickel on other materials for their increased properties. Nickel electroplating has played a vital role in our modern society but also caused considerable environmental concerns due to the mass discharge of its wastewater (i.e. containing nickel and other heavy metals) to the environment. Thus, there is a growing need for treating nickel electroplating wastewater to protect the environment and, in tandem, recover nickel for beneficial use. This study explores a novel application of membrane distillation (MD) for the treatment of nickel electroplating wastewater for a dual purpose: facilitating the nickel recovery and obtaining fresh water. The experimental results demonstrate the technical capability of MD to pre-concentrate nickel in the wastewater (i.e. hence pave the way for subsequent nickel recovery via chemical precipitation or electrodeposition) and extract fresh water. At a low operating feed temperature of 60 °C, the MD process increased the nickel content in the wastewater by more than 100-fold from 0.31 to 33 g/L with only a 20% reduction in the process water flux and obtained pure fresh water. At such high concentration factors, the membrane surface was slightly fouled by inorganic precipitates; however, membrane pore wetting was not evident, confirmed by the purity of the obtained fresh water. The fouled membrane was effectively cleaned using a 3% HCl solution to restore its surface morphology. Finally, the preliminary thermal energy analysis of the combined MD–chemical precipitation/electrodeposition process reveals a considerable reduction in energy consumption of the nickel recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelkader S, Gross F, Winter D, Went J, Koschikowski J, Geissen SU, Bousselmi L (2018) Application of direct contact membrane distillation for saline dairy effluent treatment: performance and fouling analysis. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-018-2475-3

  • Almazán-Ruiz FJ, Caballero F, Cruz-Díaz MR, Rivero EP, Vazquez-Arenas J, González I (2015) Nickel recovery from an electroplating rinsing effluent using RCE bench scale and RCE pilot plant reactors: the influence of pH control. Chem. Eng. Res. Des. 97:18–27

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4:361–377

    Article  CAS  Google Scholar 

  • Blais J-F, Djedidi Z, Cheikh RD, Tyagi R, Mercier G (2008) Metals precipitation from effluents: review. Pract Period Hazard Toxic Radio Waste Manag 12:135–149

    Article  CAS  Google Scholar 

  • Chen Q, Kum Ja M, Li Y, Chua KJ (2018) Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration. Appl Energ 230:960–973

    Article  CAS  Google Scholar 

  • Coman V, Robotin B, Ilea P (2013) Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recyc 73:229–238

    Article  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    Article  CAS  Google Scholar 

  • Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84

    Article  CAS  Google Scholar 

  • Duong HC, Álvarez IRC, Nguyen TV, Nghiem LD (2018) Membrane distillation to regenerate different liquid desiccant solutions for air conditioning. Desalination 443:137–142

    Article  CAS  Google Scholar 

  • Duong HC, Chivas AR, Nelemans B, Duke M, Gray S, Cath TY, Nghiem LD (2015a) Treatment of RO brine from CSG produced water by spiral-wound air gap membrane distillation—a pilot study. Desalination 366:121–129

    Article  CAS  Google Scholar 

  • Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD (2016a) Evaluating energy consumption of membrane distillation for seawater desalination using a pilot air gap system. Sep Purif Technol 166:55–62

    Article  CAS  Google Scholar 

  • Duong HC, Cooper P, Nelemans B, Nghiem LD (2015b) Optimising thermal efficiency of direct contact membrane distillation via brine recycling for small-scale seawater desalination. Desalination 374:1–9

    Article  CAS  Google Scholar 

  • Duong HC, Duke M, Gray S, Cath TY, Nghiem LD (2015c) Scaling control during membrane distillation of coal seam gas reverse osmosis brine. J Membr Sci 493:673–682

    Article  CAS  Google Scholar 

  • Duong HC, Duke M, Gray S, Cooper P, Nghiem LD (2016b) Membrane scaling and prevention techniques during seawater desalination by air gap membrane distillation. Desalination 397:92–100

    Article  CAS  Google Scholar 

  • Duong HC, Duke M, Gray S, Nelemans B, Nghiem LD (2016c) Membrane distillation and membrane electrolysis of coal seam gas reverse osmosis brine for clean water extraction and NaOH production. Desalination 397:108–115

    Article  CAS  Google Scholar 

  • Duong HC, Hai FI, Al-Jubainawi A, Ma Z, He T, Nghiem LD (2017) Liquid desiccant lithium chloride regeneration by membrane distillation for air conditioning. Sep. Purif. Technol. 177:121–128

    Article  CAS  Google Scholar 

  • Ge J, Peng Y, Li Z, Chen P, Wang S (2014) Membrane fouling and wetting in a DCMD process for RO brine concentration. Desalination 344:97–107

    Article  CAS  Google Scholar 

  • Giannopoulou I, Panias D (2007) Copper and nickel recovery from acidic polymetallic aqueous solutions. Miner. Eng. 20:753–760

    Article  CAS  Google Scholar 

  • Giannopoulou I, Panias D (2008) Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy 90:137–146

    Article  CAS  Google Scholar 

  • González D, Amigo J, Suárez F (2017) Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sust. Energ. Rev. 80:238–259

    Article  Google Scholar 

  • Gryta M (2005) Long-term performance of membrane distillation process. J. Membr. Sci. 265:153–159

    Article  CAS  Google Scholar 

  • Han L, Tan YZ, Netke T, Fane AG, Chew JW (2017) Understanding oily wastewater treatment via membrane distillation. J. Membr. Sci. 539:284–294

    Article  CAS  Google Scholar 

  • Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis. Mutat Res Fund Mol Mech Mut 533:67–97

    Article  CAS  Google Scholar 

  • Leaper S, Abdel-Karim A, Gad-Allah TA, Gorgojo P (2019) Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chem. Eng. J. 360:1330–1340

    Article  CAS  Google Scholar 

  • Lefers R, Bettahalli NMS, Fedoroff N, Nunes SP, Leiknes T (2018) Vacuum membrane distillation of liquid desiccants utilizing hollow fiber membranes. Sep. Purif. Technol. 199:57–63

    Article  CAS  Google Scholar 

  • Li F, Huang J, Xia Q, Lou M, Yang B, Tian Q, Liu Y (2018) Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants. Sep. Purif. Technol. 195:83–91

    Article  CAS  Google Scholar 

  • Li XM, Zhao B, Wang Z, Xie M, Song J, Nghiem LD, He T, Yang C, Li C, Chen G (2014) Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system. Wat Sci Tech 69:1036–1044

    Article  CAS  Google Scholar 

  • Mubarok MZ, Lieberto J (2013) Precipitation of nickel hydroxide from simulated and atmospheric-leach solution of nickel laterite ore. Procedia Earth Planet Sci 6:457–464

    Article  CAS  Google Scholar 

  • Nguyen NC, Chen S-S, Jain S, Nguyen HT, Ray SS, Ngo HH, Guo W, Lam NT, Duong HC (2018) Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process. Environ Sci Pollut Res 25:5203–5211

    Article  CAS  Google Scholar 

  • Njau KN, Woude Mv, Visser GJ, Janssen LJJ (2000) Electrochemical removal of nickel ions from industrial wastewater. Chem Eng J 79:187–195

    Article  CAS  Google Scholar 

  • Orhan G, Arslan C, Bombach H, Stelter M (2002) Nickel recovery from the rinse waters of plating baths. Hydrometallurgy 65:1–8

    Article  CAS  Google Scholar 

  • Peng C, Jin R, Li G, Li F, Gu Q (2014) Recovery of nickel and water from wastewater with electrochemical combination process. Sep Purif Technol 136:42–49

    Article  CAS  Google Scholar 

  • Peng Y, Ge J, Li Z, Wang S (2015) Effects of anti-scaling and cleaning chemicals on membrane scale in direct contact membrane distillation process for RO brine concentrate. Sep Purif Technol 154:22–26

    Article  CAS  Google Scholar 

  • Plattner J, Kazner C, Naidu G, Wintgens T, Vigneswaran S (2018) Removal of selected pesticides from groundwater by membrane distillation. Environ. Sci. Pollut. Res. 25:20336–20347

    Article  CAS  Google Scholar 

  • Rezaei M, Warsinger DM, Lienhard VJH, Samhaber WM (2017) Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. J Membr Sci 530:42–52

    Article  CAS  Google Scholar 

  • Sanmartino JA, Khayet M, García-Payo MC, El-Bakouri H, Riaza A (2017) Treatment of reverse osmosis brine by direct contact membrane distillation: chemical pretreatment approach. Desalination 420:79–90

    Article  CAS  Google Scholar 

  • Sist C, Demopoulos GP (2003) Nickel hydroxide precipitation from aqueous sulfate media. JOM 55:42–46

    Article  CAS  Google Scholar 

  • Swaminathan J, Lienhard JH (2018) Design and operation of membrane distillation with feed recirculation for high recovery brine concentration. Desalination 445:51–62

    Article  CAS  Google Scholar 

  • Tomaszewska M, Gryta M, Morawski AW (2001) Recovery of hydrochloric acid from metal pickling solutions by membrane distillation. Sep Purif Technol 22(23):591–600

    Article  Google Scholar 

  • Velioğlu S, Han L, Chew JW (2018) Understanding membrane pore-wetting in the membrane distillation of oil emulsions via molecular dynamics simulations. J. Membr. Sci. 551:76–84

    Article  CAS  Google Scholar 

  • Wang Z, Chen Y, Sun X, Duddu R, Lin S (2018) Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J. Membr. Sci. 559:183–195

    Article  CAS  Google Scholar 

  • Wang Z, Lin S (2017) Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 112:38–47

    Article  CAS  Google Scholar 

  • Xie M, Nghiem LD, Price WE, Elimelech M (2013) A forward osmosis–membrane distillation hybrid process for direct sewer mining: system performance and limitations. Environ. Sci. Technol. 47:13486–13493

    Article  CAS  Google Scholar 

  • Zhang P, Knötig P, Gray S, Duke M (2015) Scale reduction and cleaning techniques during direct contact membrane distillation of seawater reverse osmosis brine. Desalination 374:20–30

    Article  CAS  Google Scholar 

  • Zhang Z, Du X, Carlson KH, Robbins CA, Tong T (2019) Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration. Desalination 454:82–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung C. Duong.

Additional information

Responsible editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, H.C., Pham, T.M., Luong, S.T. et al. A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater. Environ Sci Pollut Res 26, 23407–23415 (2019). https://doi.org/10.1007/s11356-019-05626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05626-9

Keywords

Navigation