Evaluation of 1,3-propanediol production by two Citrobacter freundii strains using crude glycerol and soybean cake hydrolysate

Abstract

Biodiesel production processes using soybean as feedstock generates soybean cake and crude glycerol as by-products. These by-product streams were used as sole feedstocks for the production of 1,3-propanediol (PDO) using two bacterial strains of Citrobacter freundii. Soybean cake has been converted into a nutrient-rich hydrolysate by crude enzymes produced via solid state fermentation. The effect of initial glycerol and free amino nitrogen concentration on bacterial growth and PDO production has been evaluated in batch bioreactor cultures showing that C. freundii VK-19 is a more efficient PDO producer than C. freundii FMCC-8. The cultivation of C. freundii VK-19 in fed-batch bioreactor cultures using crude glycerol and soybean cake hydrolysates led to PDO concentration of 47.4 g/L with yield and productivity of 0.49 g/g and 1.01 g/L/h, respectively. The effect of PDO, metabolic by-products, and sodium and potassium salts on bacterial growth was evaluated showing that potassium salts initially enhance bacterial growth, whereas sodium salts cause significant inhibition to bacterial growth. Soybean cake hydrolysate and crude glycerol could be utilized for PDO production, but the fermentation efficiency is influenced by the catalyst used during biodiesel production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anand P, Saxena RK (2012) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N Biotechnol 29(2):199–205. https://doi.org/10.1016/j.nbt.2011.05.010

    CAS  Article  Google Scholar 

  2. Barros S (2015) Brazil biofuels Annual, Biofuels-Ethanol and Biodiesel, GAIN Report Number BR15006. USDA Foreign Agricultural Service

  3. Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35(6):701–705

    CAS  Article  Google Scholar 

  4. Casali S, Gungormusler M, Bertin L, Fava F, Azbar N (2012) Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochem Eng J 64:84–90. https://doi.org/10.1016/j.bej.2011.11.012

    CAS  Article  Google Scholar 

  5. Chatzifragkou A, Papanikolaou S (2012) Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95(1):13–27. https://doi.org/10.1007/s00253-012-4111-3

    CAS  Article  Google Scholar 

  6. Chatzifragkou A, Dietz D, Komaitis M, Zeng AP, Papanikolaou S (2010) Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107(1):76–84. https://doi.org/10.1002/bit.22767

    CAS  Article  Google Scholar 

  7. Chatzifragkou A, Papanikolaou S, Kopsahelis N, Kachrimanidou V, Dorado MP, Koutinas AA (2014) Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresour Technol 159:167–175. https://doi.org/10.1016/j.biortech.2014.02.021

    CAS  Article  Google Scholar 

  8. Doulgeraki AI, Paramithiotis S, Nychas GJ (2011) Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. Int J Food Microbiol 145(1):77–83. https://doi.org/10.1016/j.ijfoodmicro.2010.11.030

    Article  Google Scholar 

  9. Ferreira JS, Magali IV, Cammarota C (2018) Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production. Environ Sci Pollut Res 25(22):21811–21821. https://doi.org/10.1007/s11356-018-2260-3

    CAS  Article  Google Scholar 

  10. Harland BF, Harland J (1980) Fermentative reduction of phytate in rye, white, and whole wheat breads. Cereal Chem 57(3):226–229

    CAS  Google Scholar 

  11. He L, Zhao X, Cheng K, Liu D (2013) Kinetic modeling of fermentative production of 1,3-Propanediol by Klebsiella pneumoniae HR526 with consideration of multiple product inhibitions. Appl Biochem Biotechnol 169(1):312–326. https://doi.org/10.1007/s12010-012-9984-1

    CAS  Article  Google Scholar 

  12. Hirschmann S, Baganz K, Koschik IVK (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Volkenrode 55(4):261–267

    CAS  Google Scholar 

  13. Kachrimanidou V, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Yanniotis S, Kookos I, Koutinas AA (2013) Utilisation of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste Biomass Valor 4(3):529–537. https://doi.org/10.1007/s12649-012-9191-x

    CAS  Article  Google Scholar 

  14. Kachrimanidou V, Kopsahelis N, Alexandri M, Strati A, Gardeli C, Papanikolaou S, Komaitis M, Kookos IK, Koutinas AA (2015) Integrated sunflower-based biorefinery for the production ofantioxidants, protein isolate and poly(3-hydroxybutyrate). Ind Crop Prod 71:106–113. https://doi.org/10.1016/j.indcrop.2015.03.003

    CAS  Article  Google Scholar 

  15. Kaur G, Srivastava AK, Chand S (2012a) Mathematical modelling approach for concentration and productivity enhancement of 1,3-propanediol using Clostridium diolis. Biochem Eng J 68:34–41. https://doi.org/10.1016/j.bej.2012.07.004

    CAS  Article  Google Scholar 

  16. Kaur G, Srivastava AK, Chand S (2012b) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118. https://doi.org/10.1016/j.bej.2012.03.002

    CAS  Article  Google Scholar 

  17. Krasnan V, Plz M, Marr AC, Markosova K, Rebros M (2018) Intensified crude glycerol conversion to butanol by immobilized Clostridium pasteurianum. Biochem Eng J 134:114–119. https://doi.org/10.1016/j.bej.2018.03.005

    CAS  Article  Google Scholar 

  18. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre P-L, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustainable Energy Rev 42:963–972. https://doi.org/10.1016/j.rser.2014.10.033

    CAS  Article  Google Scholar 

  19. Leiva-Candia DE, Tsakona S, Kopsahelis N, Garcia IL, Papanikolaou S, Dorado MP, Koutinas AA (2015) Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresour Technol 190:57–65. https://doi.org/10.1016/j.biortech.2015.03.114

    CAS  Article  Google Scholar 

  20. Lie S (1973) The EBC-Ninhydrin method for determination of free alpha amino nitrogen. Inst Brew 79(1):37–41. https://doi.org/10.1002/j.2050-0416.1973.tb03495.x

    CAS  Article  Google Scholar 

  21. Marquis RE (1968) Salt-induced contraction of bacterial cell walls. J Biotechnol 95:775–781

    CAS  Google Scholar 

  22. Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas GJE, Zeng AP, Papanikolaou S (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12(1):57–68. https://doi.org/10.1002/elsc.201100058

    CAS  Article  Google Scholar 

  23. Metsoviti M, Zeng A, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 163(4):408–418. https://doi.org/10.1016/j.jbiotec.2012.11.018

    CAS  Article  Google Scholar 

  24. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1, 3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Letters 28(21):1755–1759. https://doi.org/10.1007/s10529-006-9154-z

    CAS  Article  Google Scholar 

  25. Narisetty V, Astray G, Gullón B, Castro E, Parameswaran B, Pandey A (2017) Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: validation with statistical and neural approach. Biochem Eng J 126:109–117. https://doi.org/10.1016/j.bej.2017.07.003

    CAS  Article  Google Scholar 

  26. Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Env Microbiol 75(24):7610–7616. https://doi.org/10.1128/AEM.01774-09

    CAS  Article  Google Scholar 

  27. Papadaki A, Androutsopoulos N, Patsalou M, Koutinas M, Kopsahelis N, de Castro AM, Papanikolaou S, Koutinas AA (2017) Biotechnological production of Fumaric acid: the effect of morphology of Rhizopus arrhizus NRRL 2582. Fermentation 3(3):33. https://doi.org/10.3390/fermentation3030033

    CAS  Article  Google Scholar 

  28. Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79(11):1189–1196. https://doi.org/10.1002/jctb.1103

    CAS  Article  Google Scholar 

  29. Pateraki C, Patsalou M, Vlysidis A, Kopsahelis N, Webb C, Koutinas AA, Koutinas M (2016) Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 112:285–303. https://doi.org/10.1016/j.bej.2016.04.005

    CAS  Article  Google Scholar 

  30. Petitdemange E, Durr C, Andaloussi SA, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Industrial Microbiol 15(6):498–502. https://doi.org/10.1007/BF01570021

    CAS  Article  Google Scholar 

  31. Petrache HI, Tristram-nagle S, Harries D, Kucerka N, Nagle JF (2006) Swelling of phospholipids by monovalent salt. J Lipid Res 47(2):302–309. https://doi.org/10.1194/jlr.M500401-JLR200

    CAS  Article  Google Scholar 

  32. Rodriguez A, Wojtusik M, Masca F, Santos VE, Garcia-Ochoa F (2017) Kinetic modeling of 1,3-propanediol production from raw glycerol by Shimwellia blattae: influence of the initial substrate concentration. Biochem Eng J 117:57–65. https://doi.org/10.1016/j.bej.2016.09.018

    CAS  Article  Google Scholar 

  33. Salakkam A, Webb C (2018) Production of poly(3-hydroxybutyrate) from a complete feedstock derived from biodiesel by-products (crude glycerol and rapeseed meal). Biochem Eng J 137:358–364. https://doi.org/10.1016/j.bej.2018.06.018

    CAS  Article  Google Scholar 

  34. Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64(3):891–898. https://doi.org/10.1007/s13213-013-0767-x

    CAS  Article  Google Scholar 

  35. Sattayasamitsathit S, Prasertsan P, Methacanon P (2011) Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Process Biochem 46(2):608–614. https://doi.org/10.1016/j.procbio.2010.10.009

    CAS  Article  Google Scholar 

  36. Tamosiunas A, Valatkevicius P, Gimzauskaite D, Jeguirim M, Mėcius V (2017) Aikas M (2017) Energy recovery from waste glycerol by utilizing thermal water vapor plasma. Environ Sci Pollut Res 24(11):10030–10040. https://doi.org/10.1007/s11356-016-8097-8

    CAS  Article  Google Scholar 

  37. Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C (2012) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 93(3):1325–1335. https://doi.org/10.1007/s00253-011-3766-5

    CAS  Article  Google Scholar 

  38. Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop K (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93(3):1057–1063. https://doi.org/10.1007/s00253-011-3595-6

    CAS  Article  Google Scholar 

  39. Zabaniotou A, Kamaterou P, Kachrimanidou V, Vlysidis A, Koutinas A (2018) Taking a reflexive TRL3-4 approach to sustainable use of sunflower meal for the transition from a mono-process pathway to a cascade biorefinery in the context of Circular Bioeconomy. J Clean Prod 172:4119–4129. https://doi.org/10.1016/j.jclepro.2017.01.151

    CAS  Article  Google Scholar 

Download references

Funding

The work presented during this study has been funded by Petrobras (Brazil) under the project 2012/00320-2.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Apostolis Koutinas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maina, S., Kachrimanidou, V., Ladakis, D. et al. Evaluation of 1,3-propanediol production by two Citrobacter freundii strains using crude glycerol and soybean cake hydrolysate . Environ Sci Pollut Res 26, 35523–35532 (2019). https://doi.org/10.1007/s11356-019-05485-4

Download citation

Keywords

  • Biodiesel industry by-products
  • Fermentation
  • Platform chemical
  • Product inhibition
  • Enzymatic hydrolysis
  • Bioprocess