Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 22, pp 22826–22834 | Cite as

Growth, accumulation and uptake of Eichhornia crassipes exposed to high cadmium concentrations

  • Eliana MelignaniEmail author
  • Ana María Faggi
  • Laura Isabel de Cabo
Research Article

Abstract

A greenhouse experiment was performed to evaluate the growth, accumulation, and uptake rate of Eichhornia crassipes subject to high cadmium concentrations. Three doses of Cd were added to polluted river water (1, 5, and 10 mg Cd/L), and polluted water with basal Cd concentration (0.070 mg/L) was used as a control. The experiment lasted for 7 days. Signs of stress and toxicity were visible in all treatments from day 3 of the experiment. The growth of the water hyacinth was slightly stimulated in the presence of low Cd concentration (1 mg/L), but this could also be due to the chloride and other nutrients present in the polluted water. Cd was accumulated mainly in roots, showing a maximum concentration of 1742.1 mg Cd/kg dw (10 mg Cd/L). The translocation from roots to leaves was low, with a maximum accumulation of 147.4 mg Cd/kg dw (10 mg Cd/L). The uptake rate for roots reached a maximum of 248.7 mg Cd/kg·day while the uptake rate for leaves did not saturate in the range of the studied concentrations (max. 20.8 mg Cd/kg·day). The water hyacinth showed promising results for the application in the treatment of Cd-polluted waters given its ability to tolerate high Cd concentrations in the media (up to 10 mg Cd/L) and its capacity for uptake and accumulation.

Keywords

Aquatic plants Trace elements Water hyacinth 

Notes

Acknowledgments

The authors would like to thank Cristian Weigandt for the determinations of heavy metals and Carlos Hernández for the assistance in the greenhouse.

Funding

This study was funded by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 00-356) and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (PIP 0323).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797.  https://doi.org/10.1016/j.jhazmat.2009.05.035 CrossRefGoogle Scholar
  2. ACUMAR (2017) Resolution No. 46/2017. Annex I. Consolidated table of permissible limits for discharge of liquid effluents. Official Bulletin No. 33593, Buenos Aires, ArgentinaGoogle Scholar
  3. Aisien FA, Faleye O, Aisien ET (2010) Phytoremediation of heavy metals in aqueous solutions. Leonardo J Sci:37–46Google Scholar
  4. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881.  https://doi.org/10.1016/j.chemosphere.2013.01.075 CrossRefGoogle Scholar
  5. ANZECC, ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy Paper No. 4. Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, CanberraGoogle Scholar
  6. APHA (1999) Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington, USAGoogle Scholar
  7. Argentina (1991) National Law No. 24051 on Hazardous Waste. Official Bulletin No. 27307, Buenos Aires, ArgentinaGoogle Scholar
  8. Basílico G, de Cabo L, Faggi A, Miguel S (2016) Low-tech alternatives for the rehabilitation of aquatic and riparian environments. In: Ansari AA, Singh Gill S, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants. Springer International Publishing, Switzerland, pp 349–364Google Scholar
  9. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34.  https://doi.org/10.1590/S1677-04202005000100003 CrossRefGoogle Scholar
  10. Bernhardt A, Gysi N (2013) The worlds worst 2013: the top ten toxic threats. Zurich, SwitzerlandGoogle Scholar
  11. Castañé PM, Loez CR, Olguín HF, Puig A, Rovedatti MG, Topalián ML, Salibián A (1998) Caracterización y variación espacial de parámetros fisicoquímicos y del plancton en un río urbano contaminado (río Reconquista, Argentina). Rev Int Contam Ambient 14:69–77Google Scholar
  12. CCME (2014) Canadian Water Quality Guidelines for the Protection of Aquatic Life: Cadmium. Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  13. Davis RD, Beckett PHT, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 49:395–408.  https://doi.org/10.1007/BF02149747 CrossRefGoogle Scholar
  14. Delgado M, Bigeriego M, Guardiola E (1993) Uptake of Zn, Cr and Cd by water hyacinths. Water Res 27:269–272.  https://doi.org/10.1016/0043-1354(93)90085-V CrossRefGoogle Scholar
  15. Dhir B, Srivastava S (2011) Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng 37:893–896.  https://doi.org/10.1016/j.ecoleng.2011.01.007 CrossRefGoogle Scholar
  16. Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212.  https://doi.org/10.3390/su7022189 CrossRefGoogle Scholar
  17. DWAF (1996) South African Water Quality Guidelines. Volume 7: Aquatic Ecosystems. Department of Water Affairs and Forestry, Pretoria, South AfricaGoogle Scholar
  18. ECYT-AR (2011) Cuenca Matanza-Riachuelo. In: La Encicl. Ciencias y Tecnol. en Argentina. https://cyt-ar.com.ar/cyt-ar/index.php/Cuenca_Matanza_-_Riachuelo. Accessed 15 Nov 2017
  19. Eid EM, Shaltout KH, Moghanm FS, Youssef MSG, El-Mohsnawy E, Haroun SA (2019) Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: perspectives for phytoremediation. Int J Phytoremediation 0:1–10.  https://doi.org/10.1080/15226514.2019.1566885 CrossRefGoogle Scholar
  20. El-Leboudi AE, Abd-Elmoniem EM, Soliman EM, El-Sayed OFM (2008) Removal of some heavy metals from treated waste water by aquatic plants. In: 3rd international conference on water resources and arid environments and the 1st Arab Water Forum, Riyadh, Saudi ArabiaGoogle Scholar
  21. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46.  https://doi.org/10.1016/j.envexpbot.2012.04.006 CrossRefGoogle Scholar
  22. Gómez N (1998) Use of epipelic diatoms for evaluation of water quality in the Matanza-Riachuelo (Argentina), a Pampean plain river. Water Res 32:2029–2034.  https://doi.org/10.1016/S0043-1354(97)00448-X CrossRefGoogle Scholar
  23. Hasan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresour Technol 98:918–928.  https://doi.org/10.1016/j.biortech.2006.02.042 CrossRefGoogle Scholar
  24. Kamari A, Yusof N, Abdullah H, Haraguchi A, Abas MF (2017) Assessment of heavy metals in water, sediment, Anabas testudineus and Eichhornia crassipes in a former mining pond in Perak, Malaysia. Chem Ecol 33:637–651.  https://doi.org/10.1080/02757540.2017.1351553 CrossRefGoogle Scholar
  25. Kay SH, Haller WT, Garrard LA (1984) Effects of heavy metals on water hyacinths (Eichhornia crassipes (Mart.) Solms). Aquat Toxicol 5:117–128.  https://doi.org/10.1016/0166-445X(84)90003-1 CrossRefGoogle Scholar
  26. Khellaf N, Zerdaoui M (2010) Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. Ecotoxicology 19:1363–1368.  https://doi.org/10.1007/s10646-010-0522-z CrossRefGoogle Scholar
  27. Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32.  https://doi.org/10.1016/j.geoderma.2006.08.024 CrossRefGoogle Scholar
  28. Körner S, Das SK, Veenstra S, Vermaat JE (2001) The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquat Bot 71:71–78.  https://doi.org/10.1016/S0304-3770(01)00158-9 CrossRefGoogle Scholar
  29. Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia 30:93–103CrossRefGoogle Scholar
  30. Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37.  https://doi.org/10.1093/jxb/erq281 CrossRefGoogle Scholar
  31. Magdaleno A, Puig A, De Cabo L, Salinas C, Arreghini S, Korol S, Bevilacqua S, López L, Moretton J (2001) Water pollution in an urban Argentine river. Bull Environ Contam Toxicol 67:408–415CrossRefGoogle Scholar
  32. Magdaleno A, De Cabo L, Arreghini S, Salinas S (2014) Assessment of heavy metal contamination and water quality in an urban river from Argentina. Braz J Aquat Sci Technol 18:113.  https://doi.org/10.14210/bjast.v18n1.p113-120 CrossRefGoogle Scholar
  33. Malar S, Vikram SS, Favas PJ, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54.  https://doi.org/10.1186/s40529-014-0054-6 CrossRefGoogle Scholar
  34. Malar S, Sahi SV, Favas PJC, Venkatachalam P (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608.  https://doi.org/10.1007/s11356-014-3576-2 CrossRefGoogle Scholar
  35. Mazen AMA, El Maghraby OMO (1997) Accumulation of cadmium, lead and strontium, and a role of calcium oxalate in water hyacinth tolerance. Biol Plant 40:411–417.  https://doi.org/10.1023/A:1001174132428 CrossRefGoogle Scholar
  36. Melignani E, de Cabo LI, Faggi AM (2015) Copper uptake by Eichhornia crassipes exposed at high level concentrations. Environ Sci Pollut Res Int 22:8307–8315.  https://doi.org/10.1007/s11356-014-3972-7 CrossRefGoogle Scholar
  37. Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097.  https://doi.org/10.1016/j.biortech.2008.01.002 CrossRefGoogle Scholar
  38. Muramoto S, Oki Y (1983) Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bull Environ Contam Toxicol 30:170–177.  https://doi.org/10.1007/BF01610117 CrossRefGoogle Scholar
  39. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216.  https://doi.org/10.1007/s10311-010-0297-8 CrossRefGoogle Scholar
  40. O’Keeffe DH, Hardy JK, Rao RA (1984) Cadmium uptake by the water hyacinth: effects of solution factors. Environ Pollut Ser A Ecol Biol 34:133–147.  https://doi.org/10.1016/0143-1471(84)90054-0 CrossRefGoogle Scholar
  41. Park S, Kang D, Kim Y, Lee SM, Chung Y, Sung K (2011) Biosorption and growth inhibition of wetland plants in water contaminated with a mixture of arsenic and heavy metals. Eng Life Sci 11:84–93.  https://doi.org/10.1002/elsc.201000024 CrossRefGoogle Scholar
  42. Phetsombat S, Kruatrachue M, Pokethitiyook P, Upatham S (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol 27:645–652Google Scholar
  43. Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Fadhil M, Din M, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133.  https://doi.org/10.1016/j.jenvman.2015.08.018 CrossRefGoogle Scholar
  44. Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599.  https://doi.org/10.1016/j.jhazmat.2016.07.053 CrossRefGoogle Scholar
  45. Rodríguez-Serrano M, Martínez-de la Casa N, Romero-Puertas MC, del Río LA, Sandalio LM (2008) Toxicidad del cadmio en plantas. Rev Ecosistemas 17:139–146 in SpanishGoogle Scholar
  46. Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130.  https://doi.org/10.1016/S0098-8472(98)00058-6 CrossRefGoogle Scholar
  47. Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67:2229–2240.  https://doi.org/10.1016/j.chemosphere.2006.12.019 CrossRefGoogle Scholar
  48. Smolyakov BS (2012) Uptake of Zn, Cu, Pb, and Cd by water hyacinth in the initial stage of water system remediation. Appl Geochem 27:1214–1219.  https://doi.org/10.1016/j.apgeochem.2012.02.027 CrossRefGoogle Scholar
  49. Soltan ME, Rashed MN (2003) Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv Environ Res 7:321–334.  https://doi.org/10.1016/S1093-0191(02)00002-3 CrossRefGoogle Scholar
  50. Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. AMBIO A J Hum Environ 41:122–137.  https://doi.org/10.1007/s13280-011-0159-z CrossRefGoogle Scholar
  51. Sukumaran D (2013) Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Appl Ecol Environ Sci 1:92–97.  https://doi.org/10.12691/aees-1-5-4 CrossRefGoogle Scholar
  52. Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Botany 37:1–13.  https://doi.org/10.3906/bot-1112-16Functions
  53. USEPA (2016) Aquatic life ambient water quality criteria cadmium - 2016. United States Environmental Protection AgencyGoogle Scholar
  54. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080.  https://doi.org/10.1093/aob/mcq085 CrossRefGoogle Scholar
  55. Wolverton BC, McDonald RC (1978) Bioaccumulation and detection of trace levels of cadmium in aquatic systems by Eichhornia crassipes. Environ Health Perspect 27:161–164.  https://doi.org/10.2307/3428875 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Micología y Botánica – Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” – Consejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresArgentina
  3. 3.Facultad de Ingeniería, Universidad de FloresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations