Ternary diagrams as a tool for developing ceramic materials from waste: relationship between technological properties and microstructure

Abstract

The present work proposes the manufacture of ceramic construction materials using raw materials which are only industrial wastes from different production processes (electric arc furnace steel slag, coal bottom ash, carbon fly ash, and oil-filtering diatomaceous-earth). From them, the SiO2-Al2O3-CaO equilibrium phase diagram has been used to formulate two materials compositions with the objective of obtaining ceramics whose chemical composition is located in the same area as a traditional clay-based material, but with two different technological behaviors: refractoriness due to calcium phase’s development and densification due to a greater melting capacity. The waste-based pieces have been sintered at three firing temperatures (1000 °C, 1050 °C, and 1100 °C) and the mineralogical composition has been quantified by Rietveld refinement-XRD in order to establish the agreement between the phases foreseen by the formulations in the diagrams and the mineralogical compositions actually developed after the sintering treatment. In addition, fired materials have been subjected to a complete microstructural characterization by means of SEM-EDX and the pore size distribution has been determined by means of mercury intrusion porosimetry and helium pycnometry. In general, all obtained materials display adequate technological properties for their use as building materials so this characterization has allowed to show the suitability of the ternary diagram SiO2-Al2O3-CaO for the design of ceramic compositions from industrial wastes. Therefore, extending the use of phase diagrams as a design tool is still little explored for waste-based ceramics, and those that have been mainly used for studying Mg-based phases can have an important contribution to a more sustainable construction sector.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahmaruzzaman MA (2010) Review on the utilization of fly ash. Program Energy Combust 36:327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    CAS  Article  Google Scholar 

  2. Aineto M, Acosta A, Rincón JM, Romero M (2006) The slag from ELCOGAS IGCC thermal power plant as raw material for the synthesis of glass-ceramic materials. Part 2: synthesis and characterization of the glass-ceramic materials. Bol Soc Esp Ceram Vidrio 45(1):28–32

    CAS  Article  Google Scholar 

  3. Alaa AS, Naganathan S, Nasharuddin K, Mustapha (2013) Properties of bricks made using fly ash, quarry dust and billet scale. Constr Build Mater 41:131–138. https://doi.org/10.1016/j.conbuildmat.2012.11.077

    Article  Google Scholar 

  4. Andreola F, Barbieri L, Lancellotti I, Pozzi P (2005) Recycling industrial waste in brick manufacturing. Part 1. Mater Constr 55(280):5–16. https://doi.org/10.3989/mc.2005.v55.i280.202

    CAS  Article  Google Scholar 

  5. Aşkın A, Tatar I, Kılınç S, Tezel O (2017) The utilization of waste magnesite in the production of the cordierite ceramic. Energy Procedia 107:137–143. https://doi.org/10.1016/j.egypro.2016.12.151

    CAS  Article  Google Scholar 

  6. Barbieri L, Andreola F, Lancellotti I, Taurino R (2013) Management of agricultural biomass wastes: preliminary study on characterization and valorisation in clay matrix bricks. Waste Manag 33(11):2307–2315. https://doi.org/10.1016/j.wasman.2013.03.014

    CAS  Article  Google Scholar 

  7. Baruzzo D, Minichelli D, Bruckner S, Fedrizzi L, Bachiorrini A, Maschio S (2006) Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials. J Hazard Mater B 134:202–210. https://doi.org/10.1016/j.jhazmat.2005.10.053

    CAS  Article  Google Scholar 

  8. Chen Y, Zhang Y, Chen T, Zhao Y, Bao S (2011) Preparation of eco-friendly construction bricks from hematite tailings. Constr Build Mater 25:2107–2111. https://doi.org/10.1016/j.conbuildmat.2010.11.025

    Article  Google Scholar 

  9. Chou M, Patel V, Laird CJ, Ho KK (2001) Chemical and engineering properties of fired bricks containing 50 weight per cent of class F fly ash. Energy Sources 23:665–673. https://doi.org/10.1080/00908310119850

    CAS  Article  Google Scholar 

  10. Chumachenko NG, Tyurnikov VV, Petrova EV (2016) Controlled process of liquid-phase sintering due to low-fusible melt forming. Procedia Eng 153:118–123. https://doi.org/10.1016/j.proeng.2016.08.090

    CAS  Article  Google Scholar 

  11. De Aza AH, Pena P, Caballero A, Dd Aza S (2011) The phase equilibrium diagrams as a tool for the design and use of refractories. Bol Soc Esp Ceram Vidrio 50(6):279–290. https://doi.org/10.3989/cyv.372011

    CAS  Article  Google Scholar 

  12. Demir I (2008) Effect of organic residues addition on the technological properties of clay bricks. Waste Manag 28:622–627. https://doi.org/10.1016/j.wasman.2007.03.019

    CAS  Article  Google Scholar 

  13. Eliche-Quesada D, Corpas-Iglesias FA, Pérez-Villarejo L, Iglesias-Godino FJ (2012) Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Constr Build Mater 34:275–284. https://doi.org/10.1016/j.conbuildmat.2012.02.079

    Article  Google Scholar 

  14. El-Mahhllwy MS (2008) Characteristics of acid resisteng bricks made from quarry residues and waste steel slag. Constr Build Mater 22:1887–1896. https://doi.org/10.1016/j.conbuildmat.2007.04.007

    Article  Google Scholar 

  15. Environmental management systems - Guidelines for incorporating ecodesign (ISO 14006:2011)

  16. Fabbri B, Dondi M (1995) Caratteristiche e difetti del laterizio. Gruppo Editoriale Faenza Editrice S.p.A. Faenza

  17. Favoni C, Minichelli D, Tubaro F, Brückner S, Bachiorrini A, Maschio S (2005) Ceramic processing of municipal sewage sludge (MSS) and steelworks slags (SS). Ceram Int 31:697–702. https://doi.org/10.1016/j.ceramint.2004.07.010

    CAS  Article  Google Scholar 

  18. Feng HE, Fang Y, Xie J, Xie J (2012) Fabrication and characterization of glass–ceramics materials developed from steel slag waste. Mater Des 42:198–203. https://doi.org/10.1016/j.matdes.2012.05.033

    CAS  Article  Google Scholar 

  19. Fiori C, Fabbri B, Donati F, Venturi I (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Appl Clay Sci 4(5–6):461–473. https://doi.org/10.1016/0169-1317(89)90023-9

    CAS  Article  Google Scholar 

  20. Galán-Arboledas RJ (2014) End of Master Project: Development of a new hydraulic binder from marl from the Province of Jaén. University of Jaén, Jaén October 2014

    Google Scholar 

  21. Galán-Arboledas RJ, Bueno S (2016) Production of ceramic materials using only waste as raw materials. Key Eng Mater 663:62–71. https://doi.org/10.4028/www.scientific.net/KEM.663.62

    Article  Google Scholar 

  22. Galán-Arboledas RJ, Merino A, Bueno S (2013) Use of new raw materials and industrial wastes to improve the possibilities of using ceramic materials from Bailén (Jaén, southern Spain). Mater Constr 63(312):553–568. https://doi.org/10.3989/mc.2012.03412

    CAS  Article  Google Scholar 

  23. Galán-Arboledas RJ, Cotes T, Martínez C, Bueno S (2015) Influence of waste addition on the porosity of clay based ceramic membranes. Desalin Water Treat 57:2633–2639. https://doi.org/10.1080/19443994.2015.1017011

    CAS  Article  Google Scholar 

  24. Galán-Arboledas RJ, Álvarez de Diego J, Dondi MB (2017) S. Energetic, environmental and technical assessment for the incorporation of waste steel slag in ceramic building materials. J Clean Prod 142:1778–1788. https://doi.org/10.1016/j.jclepro.2016.11.110

    CAS  Article  Google Scholar 

  25. Gencel O, Sutcu M, Erdogmus E, Koc V, Cay VV, Gok MS (2013) Properties of bricks with waste ferrochromium slag and zeolite. J Clean Prod 59:111–119. https://doi.org/10.1016/j.jclepro.2013.06.055

    CAS  Article  Google Scholar 

  26. González I, Galán E, Miras A, Aparicio P (1998) New uses for brick-making clay materials from the Bailén area (southern Spain). Clay Miner 33(3):453–465. https://doi.org/10.1180/000985598545750

    Article  Google Scholar 

  27. Hadjar H, Hamdi B, Jaber M, Brendlé J, Kessaïssia Z, Balard H, Donnet JB (2008) Elaboration and characterization of new mesoporous materials from diatomite and charcoal. Microporous Mesoporous Mater 107:219–226. https://doi.org/10.1016/j.micromeso.2007.01.053

    CAS  Article  Google Scholar 

  28. Horizon (2020) https://ec.europa.eu/programmes/horizon2020/en/h2020-section/climate-action-environment-resource-efficiency-and-raw-materials. Accesed 26 March 2019

  29. Kavouras P, Kehagias T, Tsilika I, Kaimakamis G, Chrissafis K, Kokkou S, Papadopoulos D, Karakostas T (2007) Glass-ceramic materials from electric arc furnace dust. J Hazard Mater 139:424–429. https://doi.org/10.1016/j.jhazmat.2006.02.043

    CAS  Article  Google Scholar 

  30. Kockal NU (2012) Utilisation of different types of coal fly ash in the production of ceramic tiles. Bol Soc Esp Ceram Vidrio 51(5):297–304. https://doi.org/10.1016/j.matdes.2011.06.046

    CAS  Article  Google Scholar 

  31. Kute S, Deodhar SV (2003) Effect of fly ash and temperature on properties of burnt clay bricks. J Civil Eng 84:82–85

    CAS  Google Scholar 

  32. Lihua Z, Li Y, Zhou Y, Cang D (2014) Preparation of novel ceramics with high CaO content from steel slag. Mater Des 64:608–613. https://doi.org/10.1016/j.matdes.2014.08.015

    CAS  Article  Google Scholar 

  33. Lin KL, Lan JY (2013) Water retention characteristics of porous ceramics produced from waste diatomite and coal fly ash. J Clean Energy Technol 1(3):211–215. https://doi.org/10.7763/JOCET.2013.V1.48

    CAS  Article  Google Scholar 

  34. Lingling X, Wei G, Tao W, Nanru Y (2005) Study on fired bricks with replacing clay by fly ash in high volume ratio. Constr Build Mater 9:243–247. https://doi.org/10.1016/j.conbuildmat.2004.05.017

    Article  Google Scholar 

  35. Menendez E et al (2013) Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility. Bol Soc Esp Ceram Vidrio 52(6):296–304. https://doi.org/10.3989/cyv.372013

    CAS  Article  Google Scholar 

  36. Monteiro SN, Vieira CMF (2005) Effect of oily waste addition to clay ceramic. Ceram Int 31(2):353–358. https://doi.org/10.1016/j.ceramint.2004.05.002

    CAS  Article  Google Scholar 

  37. Mymrine V, Ponte MJJS, Ponte HA, Kaminari NMS, Pawlowsky U, Solyon GJP (2013) Oily diatomite and galvanic wastes as raw materials for red ceramics fabrication. Constr Build Mater 41:360–364. https://doi.org/10.1016/j.conbuildmat.2012.11.041

    Article  Google Scholar 

  38. Pai-Haung S, Wu Z-Z, Chiang H-L (2004) Characteristics of bricks made from waste steel slag. Waste Manag 24:1043–1047. https://doi.org/10.1016/j.wasman.2004.08.006

    CAS  Article  Google Scholar 

  39. Pei D, Li Y, Cang D (2017) Na+-solidification behavior of SiO2-Al2O3-CaO-MgO (10 wt%) ceramics prepared from red mud. Ceram Int 43(18):16936–16942. https://doi.org/10.1016/j.ceramint.2017.09.098

    CAS  Article  Google Scholar 

  40. Ponsot I, Bernardo E (2013) Self-glazed glass ceramic foams from metallurgical slag and recycled glass. J Clean Prod 59:245–250. https://doi.org/10.1016/j.jclepro.2013.06.029

    CAS  Article  Google Scholar 

  41. Queralt I, Querol X, Lopez-Soler A (1997) Plana, F. Use of coal fly ash for ceramics. Fuel 76(8):787–791

    CAS  Article  Google Scholar 

  42. Raut SP, Ralegaonklar RV, Mandavgane SA (2011) Development of sustainable construction material using industrial and agricultural solid waste: a review of waste-create bricks. Constr Build Mater 25:4037–4042. https://doi.org/10.1016/j.conbuildmat.2011.04.038

    Article  Google Scholar 

  43. Romero M, Rincón JM (2000) The controlled vitrification/crystallisation process applied to the recycling of inorganic industrial wastes. Bol Soc Esp Ceram Vidrio 39(1):155–163

    CAS  Article  Google Scholar 

  44. Serra MF, Acebedo MF, Conconi MS, Suarez G, Aglietti EF, Rendtorff NM (2014) Thermal evolution of the mechanical properties of calcareous earthware. Ceram Int 40:1709–1716. https://doi.org/10.1016/j.ceramint.2013.07.067

    CAS  Article  Google Scholar 

  45. Shiau JS, Liu SH, Ho CK (2012) Effect of magnesium and aluminum oxides on fluidity of final blast furnace slag and its application. Mater Trans JIM 53(8):1449–1455

    CAS  Article  Google Scholar 

  46. Vinai R, Lawane A, Minane JR, Amadou A (2013) Coal combustion residues valorisation: research and development on compressed brick production. Constr Build Mater 40:1088–1096. https://doi.org/10.1016/j.conbuildmat.2012.11.096

    Article  Google Scholar 

  47. Yu-Ling W et al (2013) Recycling steel-manufacturing slag and harbor sediment into construction materials. J Hazard Mater 265:253–260. https://doi.org/10.1016/j.jhazmat.2013.11.049

    CAS  Article  Google Scholar 

  48. Zhang L (2013) Production of brick from waste materials—a review. Constr Build Mater 47:643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043

    Article  Google Scholar 

  49. Zhenzi J, Hirotaka M, Ioku K, Ishida E (2007) Hydrothermal synthesis of mesoporous materials from diatomaceous earth. Mater Interfaces Electrochem Phenomena 53(8):2114–2122. https://doi.org/10.1002/aic.11235

    CAS  Article  Google Scholar 

  50. Zhu Q, Wang H, Tian Y, Gao R, Zhao S, Huang L, Xu S, Zhang Z (2017) The forming region and mechanical properties of CaO-Al2O3-SiO2 system. Ceram Int 43(16):13810–13816. https://doi.org/10.1016/j.ceramint.2017.07.101

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The technical and human support provided by CICT of Universidad de Jaén (UJA, MINECO, Junta de Andalucía, FEDER) is gratefully acknowledged. The support from the EFIWALL Project (PI12/1920, Junta de Andalucía) is also acknowledged.

Funding

This work was funded by the SMARTMATS Project, (MAT2015-70034-R, Spanish Ministry of Economy and Competitiveness).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosendo Jesús Galán-Arboledas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galán-Arboledas, R.J., Cotes-Palomino, M.T., Martínez-García, C. et al. Ternary diagrams as a tool for developing ceramic materials from waste: relationship between technological properties and microstructure. Environ Sci Pollut Res 26, 35574–35587 (2019). https://doi.org/10.1007/s11356-019-05343-3

Download citation

Keywords

  • Waste
  • Ceramic materials
  • Ternary phase diagram
  • Technological properties
  • Microstructure