Skip to main content

Advertisement

Log in

Toxic effect of alpha cypermethrin, an environmental pollutant, on myocardial tissue in male wistar rats

  • Environmental Pollution, Food Contamination, Risk Assessment and Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

α-Cypermethrin (CYP) is a pyrethroid insecticide-like environmental pollutant, widely found in the environment. New research links exposure to high levels of CYP to health damage; however, little is known about the effect of CYP on cardiovascular disease. The purpose of the present study was to evaluate, for the first time, biochemical and cardiovascular changes in male rats resulting from subchronic CYP exposure. The animals were divided into three groups: group 1 served as the control, group 2 (CYP1) received 4 mg/kg of CYP by gavage, and group 3 (CYP2) received 8 mg/kg of CYP by gavage, for 8 weeks each. Results showed that both CYP1 and CYP2 markedly increased plasma concentrations of cardiac markers (LDH, CK-MB, and troponin-T). Moreover, compared to the control group, CYP treatment elevated cardiac oxidative stress, as shown by increased MDA level and decreased activity of SOD, CAT, and GSH-Px. In addition, CYP2 caused a significant increase of 42% the concentration of total cholesterol and more than 75% in triglycerides compared to the control group. Furthermore, DNA fragmentation and collagen deposition were both amplified owing to CYP toxicity. This harmful effect was confirmed by a histological study using H-E and Sirius Red staining. Overall, our results clearly proved the cardiotoxicity caused by α-cypermethrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas AM (2016) Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats. J Physiol Biochem 72:469–484

    CAS  Google Scholar 

  • Abdou HM, Hussien HM, Yousef MI (2012) Deleterious effects of cypermethrin on rat liver and kidney: protective role of sesame oil. J Environ Sci Health B 47:306–314

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Atli G, Alptekin O, Tukel S, Canli M (2006) Response of catalase activity to ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol 143:218–224

    Google Scholar 

  • Bacci E, Calamari D, Gaggi C, Vighi M (1987) An approach for the prediction of environmental distribution and fate of cypermethrin. Chemosphere 16:1373–1380

    CAS  Google Scholar 

  • Barker DJ (1995) The fetal and infant origins of disease. Eur J Clin Investig 25:457–463

    CAS  Google Scholar 

  • Bhatnagar A (2004) Cardiovascular pathophysiology of environmental pollutants. Am J Physiol Heart Circ Physiol 286:479–485

    Google Scholar 

  • Bhatt L, Sebastian B, Joshi V (2017) Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity. J Ayurveda Integr Med 8:62–67

    Google Scholar 

  • Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106

    CAS  Google Scholar 

  • Buege JA, Aust SD (1972) On the solubilization of NADPH-cytochrome c reductase from rat liver microsomes with crude pancreatic lipase. Biochim Biophys Acta 286:433–436

    CAS  Google Scholar 

  • Chen S, Gu S, Wang Y, Yao Y, Wang G, Jin Y, Wu Y (2016) Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China. Environ Pollut 218:1128–1134

    CAS  Google Scholar 

  • Cui Y, Guo J, Xu B, Chen Z (2006) Potential of chlorpyrifos and cypermethrin forming DNA adducts. Mutat Res 604:36–41

    CAS  Google Scholar 

  • De Flora S, Izzotti A (2007) Mutagenesis and cardiovascular diseases: Molecular mechanisms, risk factors, and protective factors. Mutat Res 621:5–17

    Google Scholar 

  • Ding G, Shi R, Gao Y, Zhang Y, Kamijima M, Sakai K, Wang G, Feng C, Tian Y (2012) Pyrethroid pesticide exposure and risk of childhood acute lymphocytic leukemia in Shanghai. Environ Sci Technol 46:13480–13487

    CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  Google Scholar 

  • Feriani A, del Mar Contreras M, Talhaoui N, Gómez-Caravaca AM, Taamalli A, Segura-Carretero A, Ghazouani L, El Feki A, Allagui MS (2017) Protective effect of Globularia alypum leaves against deltamethrininduced nephrotoxicity in rats and determination of its bioactive compounds using high-performance liquid chromatography coupled with electrospray ionization tandem quadrupole–time-of-flight mass spectrometry. J Funct Foods 32:139–148

    CAS  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Google Scholar 

  • Gabbianelli R, Nasuti C, Falcioni G, Cantalamessa F (2004) Lymphocyte DNA damage in rats exposed to pyrethroids effect of supplementation with vitamins E and C. Toxicology 203:17–26

    CAS  Google Scholar 

  • Georgiadis N, Tsarouhas K, Tsitsimpikou C, Vardavas A, Rezaee R, Germanakis I, Tsatsakis A, Stagos D, Kouretas D (2018) Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 353:1–14

    CAS  Google Scholar 

  • Gupta A, Nigam D, Gupta A, Shukla GS, Agarwal AK (1999) Effect of pyrethroid-based liquid mosquito repellent inhalation on the blood–brain barrier function and oxidative damage in selected organs of developing rats. J Appl Toxicol 19:67–72

    CAS  Google Scholar 

  • Hall BE, Vickers JA, Hopkins JA (1980) A study to determine the bioaccumulation of 14C cypermethrin radioactivity in the rat following repeated oral administration. WHO Report No. 2487–72/20

    Google Scholar 

  • Han J, Zhou L, Luo M, Liang Y, Zhao W, Wang P, Zhou Z, Liu D (2017) Nonoccupational exposure to pyrethroids and risk of coronary heart disease in the Chinese population. Environ Sci Technol 51:664–670

    CAS  Google Scholar 

  • Hocine L, Merzouk H, Merzouk SA, Ghorzi H, Youbi M, Narce M (2016) The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns. Pestic Biochem Physiol 134:49–54

    CAS  Google Scholar 

  • Horton, M.K., Jacobson, J.B., McKelvey, W., Holmes, D., Fincher, F., Quantano, A., Diaz,B.P., Shabbazz, F., Shepard, P., Rundle, A., Whyatt, R. M (2011) Characterization of residential pest control products used in inner city communities in new York City. J Expo Sci Environ Epidemiol 21:291–301

    Google Scholar 

  • Hussien HM, Abdou HM, Yousef MI, Yousef (2013) Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats: the protective effect of sesame oil. Brain Res Bull 92:76–83

    CAS  Google Scholar 

  • Kale M, Rathore N, John S, Bhatnagar D (1999) Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 105:197–205

    CAS  Google Scholar 

  • Kanno S, Shouji A, Hirata R, Asou K, Ishikawa M (2004) Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci 75:353–365

    CAS  Google Scholar 

  • Kastan MB (2008) DNA damage responses: mechanisms and roles in human disease: 2007 G.H.a. Clowes memorial award lecture. Mol Cancer Res 6:517–524

    CAS  Google Scholar 

  • Kelly SA, Harvilla KM, Brady TC, Abrano KH, Leveir ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384

    CAS  Google Scholar 

  • Kumar M, Kasala ER, Bodduluru LN, Dahiya V, Lahkar M (2016) Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm Res 65:613–622

    CAS  Google Scholar 

  • Kutluyer F, Benzer F, Eris M, Öğretmen F, Inanan BE (2016) The in vitro effect of cypermethrin on quality and oxidative stress indices of rainbow trout Oncorhynchus mykiss spermatozoa. Pestic Biochem Physiol 128:63–67

    CAS  Google Scholar 

  • Lawal AO (2017) Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: the role of Nrf2 and AhR-mediated pathways. Toxicol Lett 270:88–95

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma X (2009) Research progress on analytical technique of pyrethroid pesticide residue. J Anhui Agr Sci 37:13775–13777

    CAS  Google Scholar 

  • Manna S, Bhattacharyya D, Mandal TK, Das S (2004) Repeated dose toxicity of alfa cypermethrin in rats. J Vet Sci 5:241–245

    CAS  Google Scholar 

  • Mansour SA, Mossa ATH (2009) Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 93:34–39

    CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  Google Scholar 

  • Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MK, Prabhakar YS, Bandyopadhyay S (2012) Cypermethrin induces astrocyte apoptosis by the disruption of the autocrine/paracrine mode of epidermal growth factor receptor signaling. Toxicol Sci 125:473–487

    CAS  Google Scholar 

  • Mercer J, Mahmoudi M, Bennett M (2007) DNA damage, p53, apoptosis and vascular disease. Mutat Res 621:75–86

    CAS  Google Scholar 

  • Moore-Morris T, Guimarães-Camboa N, Yutzey KE, Pucéat M, Evans SM (2015) Cardiac fibroblasts: from development to heart failure. J Mol Med 93:823–830

    CAS  Google Scholar 

  • Nasuti C, Cantalamessa F, Falcioni G, Gabbianelli R (2003) Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 191:233–244

    CAS  Google Scholar 

  • Oliveira EE, Schleicher S, Büschges A, Schmidt J, Kloppenburg P, Salgado VL (2011) Desensitization of nicotinic acetylcholine receptors in central nervous system neurons of the stick insect (Carausius morosus) by imidacloprid and sulfoximine insecticides. Insect Biochem Mol Biol 41:872–880

    CAS  Google Scholar 

  • Perry JJ, Fan L, Tainer JA (2007) Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Neuroscience 145:1280–1299

    CAS  Google Scholar 

  • Prüss-üstün A, Corvalan C (2006) Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease. World Health Organization, Geneva, Swizerland

    Google Scholar 

  • QYResearch Group (2017) Global synthetic pyrethroids market research report 2017. https://www.marketresearch.com/QYResearch-Group-v3531/Global-Synthetic-Pyrethroids-R esearch-10909246/

  • Ray DE (1991) Pesticides derived from plants and other organisms. In: Hayes WJ Jr, Laws ER Jr (eds) Handbook of pesticide toxicology. Academic Press, New York, pp 2–3

    Google Scholar 

  • Saillenfait AM, Ndiaye D, Sabaté JP (2015) Pyrethroids: exposure and health effects-an update. Int J Hyg Environ Health 218:281–292

    CAS  Google Scholar 

  • Sellins KS, Cohen JJ (1995) Nuclear changes in the cytotoxic T lymphocyte-induced model of apoptosis. Immunol Rev 146:241–266

    CAS  Google Scholar 

  • Shukla PC, Singh KK, Yanagawa B, Teoh H, Verma S (2010) DNA damage repair and cardiovascular diseases. Can J Cardiol 26:13A–16A

    CAS  Google Scholar 

  • Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR (2007) Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere 66:474–479

    CAS  Google Scholar 

  • Sushama Kumari S, Varghese A, Muraleedharan D, Menon VP (1990) Protective action of aspirin in experimental myocardial infarction induced by isoproterenol in rats and its effect on lipid peroxidation. Indian J Exp Biol 28:480–485

    CAS  Google Scholar 

  • Taju G, Abdul Majeed S, Nambi KS, Farook MA, Vimal S, Sahul Hameed AS (2014) In vitro cytotoxic, genotoxic and oxidative stress of cypermethrin on five fish cell lines. Pestic Biochem Physiol 113:15–24

    CAS  Google Scholar 

  • Tisch M, Schmezer P, Faulde M, Groh A, Maier H (2002) Genotoxicity studies on permethrin, DEET and diazinon in primary human nasal mucosal cells. Eur Arch Otorhinolaryngol 259:150–153

    Google Scholar 

  • Trevenzoli IH, Valle MM, Machado FB, Garcia RM, Passos MC, Lisboa PC, Moura EG (2007) Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters. J Physiol 15:629–637

    Google Scholar 

  • Tsutsui H, Ide T, Kinugawa S (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal 8:1737–1744

    CAS  Google Scholar 

  • Ullah S, Zuberi A, Alagawany M, Farag MR, Dadar M, Karthik K, Tiwari R, Dhama K, Iqbal HMN (2018) Cypermethrin induced toxicities in fish and adverse health outcomes: its prevention and control measure adaptation. J Environ Manag 206:863–871

    CAS  Google Scholar 

  • Undeger U, Basaran N (2005) Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Arch Toxicol 79:169–176

    CAS  Google Scholar 

  • Vaiserman (2011) Early-life origin of adult disease: evidence from natural experiments. Exp Gerontol 46:189–192

    Google Scholar 

  • Vijayakumar R, Nachiappan V (2017) Cassia auriculata flower extract attenuates hyperlipidemia in male Wistar rats by regulating the hepatic cholesterol metabolism. Biomed Pharmacother 95:394–401

    CAS  Google Scholar 

  • Wan Y, Xu L, Wang Y, Tuerdi N, Ye M, Qi R (2018) Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol 833:545–554

    CAS  Google Scholar 

  • Wang XZ, Liu SS, Sun Y, Wu JY, Zhou YL, Zhang JH (2009) Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress. Theriogenology 72:599–611

    CAS  Google Scholar 

  • Wang X, Martínez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martínez M, Rodríguez JL, Martínez-Larrañaga MR, Anadón A, Yuan Z (2016) Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ Res 149:86–104

    CAS  Google Scholar 

  • White HD (2011) Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol 57:2406–2408

    CAS  Google Scholar 

  • Wielgomas B, Krechniak J (2007) Toxicokinetic interactions of α-cypermethrin and chlorpyrifos in rats. Pol J Environ Stud 16:267–274

    CAS  Google Scholar 

  • Williams MK, Rundle A, Holmes D, Reyes M, Hoepner LA, Barr DB, Camann DE, Perera FP, Whyatt RM (2008) Changes in pest infestation levels, self-reported pesticide use, and permethrin exposure during pregnancy after 2000–2001 U.S. Environmental Protection Agency restriction of organophosphates. Environ. Health Perspect 116:1681–1688

    CAS  Google Scholar 

  • World Health Organization (2014) Global Health estimates : deaths by cause, age, sex and country, 2000–2012. Geneva

  • Xiao Y, Chen S, Hu W, Hu M (2012) New progress and prospect for the microbial degradation of pyrethroid pesticides. Chinese Agric Sci Bull 28:218–224

    Google Scholar 

  • Xiao Y, Ye J, Zhou Y, Huang J, Liu X, Huang B, Zhu L, Wu B, Zhang G, Cai Y (2018) Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch Biochem Biophys 640:37–46

    CAS  Google Scholar 

  • Yang C, Liu J, Liu K, Du B, Shi K, Ding M, Li B, Yang P (2018) Ghrelin suppresses cardiac fibrosis of post-myocardial infarction heart failure rats by adjusting the activinA-follistatin imbalance. Peptides 99:27–35

    Google Scholar 

  • Yarmohmmadi F, Rahimi N, Faghir-Ghanesefat H, Javadian N, Abdollahi A, Pasalar P, Jazayeri F, Ejtemaeemehr S, Dehpour AR (2017) Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. Eur J Pharmacol 796:39–44

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Tunisian Ministry of Higher Education and Scientific Research and the Tunisian Ministry of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhdar Ghazouani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazouani, L., Feriani, A., Mufti, A. et al. Toxic effect of alpha cypermethrin, an environmental pollutant, on myocardial tissue in male wistar rats. Environ Sci Pollut Res 27, 5709–5717 (2020). https://doi.org/10.1007/s11356-019-05336-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05336-2

Keywords

Navigation