Skip to main content
Log in

Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A simple and economical method was proposed to synthesize the shaddock peels-based activated carbon (SPAC) for their application as efficient sorbents to eliminate Cr (VI) and methyl orange (MO) from one-component and two-component systems. The synthesis was conducted via activation of phosphoric acid and high-temperature carbonization. The as-prepared SPAC was characterized by Brunauer–Emmett–Teller, scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, among other techniques. The adsorption experiment, which used five types of fruit peel (shaddock peels, orange peels, apple peels, banana peels, and tangerine peels), indicated that shaddock peels were the optimal precursors, with the high removal efficiencies for Cr (VI) (21.2%) and MO (54.25%). The effects of various factors (e.g., initial concentration, sorbent dosage, pH values, and contact time) were systematically evaluated. For the one-component system, the maximum adsorption capacities of Cr (VI) (9.95 mg/g) and MO (94.59 mg/g) reached pH levels 2 and 3, respectively. Kinetic modeling demonstrated that the pseudo-second-order kinetic model was adopted for the one-component and two-component systems. Isotherm studies suggested that Cr (VI) and MO sorption processes in the one-component explained well the Langmuir and Freundlich models, respectively. The extended Freundlich multicomponent isotherm model was more compatible for explaining competitive adsorption in the binary component system. The adsorbed amount of Cr (VI) was markedly suppressed by MO, whereas MO adsorption was not significantly influenced owing to the existence of Cr (VI). The higher adsorption capacity of MO could be mainly attributed to the strong force acting between MO and SPAC. The findings of this study confirmed that SPAC provided a sustainable choice for cycling solid waste shaddock peels to remove hazardous contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal S, Gupta VK, Ghasemi M, Azimi-Amin J (2017) Peganum harmala-L seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J Mol Liq 231:296–305

    Article  CAS  Google Scholar 

  • Alexander D, Ellerby R, Hernandez A, Wu FC, Amarasiriwardena D (2017) Investigation of simultaneous adsorption properties of cd, cu, Pb and Zn by pristine rice husks using ICP-AES and LA-ICP-MS analysis. Microchem J 135:129–139

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Khraisheh MA, Ahmad MN, Allen S (2009) Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study. J Hazard Mater 165(1–3):589–598

    Article  CAS  Google Scholar 

  • Ali A, Saeed K (2015) Decontamination of Cr(VI) and Mn(II) from aqueous media by untreated and chemically treated banana peel: a comparative study. Desalin Water Treat 53(13):3586–3591

    Article  CAS  Google Scholar 

  • Argun ME, Güclü D, Karatas M (2014) Adsorption of reactive blue 114 dye by using a new adsorbent: pomelo peel. J Ind Eng Chem 20(3):1079–1084

    Article  CAS  Google Scholar 

  • Asuha S, Zhou XG, Zhao S (2010) Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. J Hazard Mater 181(1):204–210

    Article  CAS  Google Scholar 

  • Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett 10(1):1–13

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification – a review. Chem Eng J 270:244–271

    Article  CAS  Google Scholar 

  • Bishnoi NR, Bajaj M, Sharma N, Gupta A (2004) Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour Technol 91(3):305–307

    Article  CAS  Google Scholar 

  • Calace N, Di Muro A, Nardi E, Petronio BM, Pietroletti M (2002) Adsorption isotherms for describing heavy-metal retention in paper mill sludges. Ind Eng Chem Res 41(22):5491–5497

    Article  CAS  Google Scholar 

  • Caliskan N, Kul AR, Alkan S, Sogut EG, Alacabey I (2011) Adsorption of zinc (II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study. J Hazard Mater 193:27–36

    Article  CAS  Google Scholar 

  • Chen JL, Gao YC, Xu ZB, Wu GH, Chen YC, Zhu CQ (2006) A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta 577(1):77–84

    Article  CAS  Google Scholar 

  • Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265(1–3):159–168

    Article  CAS  Google Scholar 

  • Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT (2005) Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175(3):305–316

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Manassra A, Mer'Eb M (2002) Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6(4):533–540

    Article  CAS  Google Scholar 

  • Ebadi A, Mohammadzadeh JSS, Khudiev A (2009) What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15(1):65–73

    Article  CAS  Google Scholar 

  • El-Sayed GO, Yehia MM, Asaad AA (2014) Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour Ind 7-8(C):66–75

    Article  Google Scholar 

  • Ferrero F (2007) Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J Hazard Mater 142(1):144–152

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over die adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Fritz W, Schluender EU (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci 29:1279–1282

    Article  CAS  Google Scholar 

  • Fu YZ, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79(3):251–262

    Article  CAS  Google Scholar 

  • Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Garg U, Kaur MP, Jawa GK, Sud D, Garg VK (2008) Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mater 154(1–3):1149–1157

    Article  CAS  Google Scholar 

  • Hameed BH, Mahmoud DK, Ahmad AL (2008) Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surf A 316(1):78–84

    Article  CAS  Google Scholar 

  • Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G (2017) Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater 336:146–157

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Jakab E, Faix O, Till F, Székely T (1995) Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. J Anal Appl Pyrolysis 35(2):167–179

    Article  CAS  Google Scholar 

  • Johnson RD, Arnold FH (1995) The temkin isotherm describes heterogeneous protein adsorption. Biochim Biophys Acta Protein Struct Mol Enzymol 1247(2):293–297

    Article  Google Scholar 

  • Kennedy LJ, Vijaya JJ, Sekaran G (2004) Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Ind Eng Chem Res 43(8):1832–1838

    Article  CAS  Google Scholar 

  • Khraisheh MA, Al-degs YS, Mcminn WA (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99(2):177–184

    Article  CAS  Google Scholar 

  • Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater 13(10):3169–3183

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Langmuir I (1918) A new adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  • Li H, Sun Z, Zhang L, Tian Y, Cui G, Yan S (2016) A cost-effective porous carbon derived from pomelo peel for the removal of methyl orange from aqueous solution. Colloid Surf A 489:191–199

    Article  CAS  Google Scholar 

  • Li S, Zhang X, Huang Y (2017) Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J Hazard Mater 321:711–719

    Article  CAS  Google Scholar 

  • Liang L, Liao XG, Ding WD, School YM (2016) Preparation of pomelo Peel absorbent and its application in adsorption of parabens emerging contaminants in in water. Environ Sci Technol 39(S2):176–182

    Google Scholar 

  • Liu JY, Huang GH, Deng JQ, Liu K, Xie YB (2012) Adsorbent prepared from waste pomelo Peel and its adsorption of Pb(2+) in wastewater. J Ecol Rural Environ 28(2):187–191

    Google Scholar 

  • Mckay G, Al Duri B (1989) Prediction of multicomponent adsorption equilibrium data using empirical correlations. Chem Eng J 41:9–23

    Article  CAS  Google Scholar 

  • Mittal A, Malviya A, Kaur D, Mittal J, Kurup L (2007) Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl Orange from wastewaters using waste materials. J Hazard Mater 148(1–2):229–240

    Article  CAS  Google Scholar 

  • Mohamed MM (2004) Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. J Colloid Interface Sci 272(1):28–34

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36(9):2304–2318

    Article  CAS  Google Scholar 

  • Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364

    Article  CAS  Google Scholar 

  • Ngah WSW, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  • Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143(3):237–241

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58(3):179–196

    Article  CAS  Google Scholar 

  • Pradhan BK, Sandle NK (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37(8):1323–1133

    Article  CAS  Google Scholar 

  • Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31

    Article  CAS  Google Scholar 

  • Sha HT, Wu YH, Fan YA (2018) Utilization of industrial waste as a novel adsorbent: mono/competitive adsorption of chromium(VI) and nickel(II) using diatomite waste modified by EDTA. Appl Organomet Chem 32:e3977

    Article  CAS  Google Scholar 

  • Short MA, Walker PL Jr (1963) Measurement of interlayer spacings and crystal sizes in turbostratic carbons. Carbon 1(1):3–9

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  • Song XL, Li L, Geng ZR, Zhou L, Ji LJ (2017) Effective and selective adsorption of as(III) via imprinted magnetic Fe3O4/HTCC composite nanoparticles. J Environ Chem Eng 5(1):16–25

    Article  CAS  Google Scholar 

  • Tao XM, Wu YH, Sha HT (2018) Cuprous oxide-modified diatomite waste from the brewery used as an effective adsorbent for removal of organic dye: adsorption performance, kinetics and mechanism studies. Water Air Soil Pollut 229(10):322

    Article  CAS  Google Scholar 

  • Temkin M, Pyzhev V (1940) Recent modification to Langmiur isotherms. Acta Physiochim USSR 12:217–222

    Google Scholar 

  • Vennilamani N, Kadirvelu K, Sameena Y, Pattabhi S (2005) Utilization of activated carbon prepared from industrial solid waste for the removal of chromium (VI) ions from synthetic solution and industrial effluent. Adsorpt Sci Technol 23(2):145–160

    Article  CAS  Google Scholar 

  • Wang XJ, Liang X, Wang Y, Wang X, Liu M, Yin DQ, Xia SQ, Zhao JF, Zhang YL (2011) Adsorption of copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation. Desalination 278(1):231–237

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Preliminary appraisal of advanced waste treatment processes. Proc Int Conf Adv Water Pollut Res 2:231–241

    Google Scholar 

  • Wu YH, Cha LG, Fan YA, Fang P, Ming Z, Sha HT (2017) Activated biochar prepared by pomelo peel using H3PO4 for the adsorption of hexavalent chromium: performance and mechanism. Water Air Soil Pollut 228(10):405

    Article  CAS  Google Scholar 

  • Xiao XN, Lu SR, Pan LL, Zeng C, He ZH, Gao J, Yu JH (2016) Enhanced thermal and mechanical properties of epoxy composites by addition of hyperbranched polyglycerol grown on cellulose fibers. J Polym Res 23(4):1–10

    Article  CAS  Google Scholar 

  • Xu JZ, Chen LZ, Qu HQ, Jiao YH, Xie JX, Xing GG (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680

    Article  CAS  Google Scholar 

  • Yagmur E, Tunc MS, Banford A, Aktas Z (2013) Preparation of activated carbon from autohydrolysed mixed southern hardwood. J Anal Appl Pyrol 104:470–478

    Article  CAS  Google Scholar 

  • Yang RT (1997) Gas separation by adsorption processes. Imperial College Press

  • Yao YJ, He B, Xu FF, Chen XF (2011) Equilibrium and kinetic studies of methyl 654 orange adsorption on multiwalled carbon nanotubes. Chem Eng J 170(1):82–89

    Article  CAS  Google Scholar 

  • Zhang GY, Yun S, Guo YL, Liu JH, Wu LY, Lin JK (2018) The application of pomelo peel as a carrier for adsorption of Epigallocatechin-3-gallate. J Sci Food Agric 98(11):4135–4141

    Article  CAS  Google Scholar 

  • Zhao T, Yao Y, Li DR, Wu F, Zhang CZ, Gao B (2018) Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for ag(I) and Pb(II). Sci Total Environ 640-641:73–79

    Article  CAS  Google Scholar 

  • Zhu L, Wang Y, Wang Y, You L, Shen X, Li S (2017) An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils. Microporous Mesoporous Mater 241:285–292

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhai Wu.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 27117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Wu, Y. & Cha, L. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange. Environ Sci Pollut Res 26, 19828–19842 (2019). https://doi.org/10.1007/s11356-019-05322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05322-8

Keywords

Navigation