Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility

Abstract

This article presents the pilot experience of an integrated biowaste management system developed in Tinos island, Greece, which promoted source separation and decentralized composting in a prototype unit. This system was introduced as a new-to-the-area of implementation and innovation, since landfilling of mixed municipal solid waste has been the common practice in Tinos island, as in many other areas of insular and mainland Greece. The biowaste management system was implemented through a bring scheme that aimed at motivating the public to separate at source the organic fraction of MSW. The system was monitored on an input-output basis of critical parameters used to assess the purity of separately collected biowaste, the treatment efficiency of the prototype unit, the quality characteristics of compost produced, and public’s awareness and participation. Results showed that biowaste source separation was practiced effectively by citizens, giving high-purity feed (> 98%). Compost samples were examined in comparison with the proposed EU End-of-Waste (EoW) quality criteria and fulfilled the requirements set. More specifically, the average values of compost samples regarding heavy metal content were 72% lower than the EoW limit value for Cd, 43% lower for Ni, 38% lower for Pd, 24% lower for Cu, and 36% lower for Zn. Examined composts also met the EoW criteria for phytotoxicity and pathogenic or parasitic microorganisms, while they showed an approx. 15% decrease in initial organic matter content. Moreover, this study analyzed the carbon balances and the degree that composting can sequestrate carbon. Overall, this study demonstrated that the development and operation of on-island, decentralized composting, when properly practiced, is a sustainable option in order for islands and remote areas to adopt a closed loop approach to the biowaste management problem, in line with the circular economy principles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. AL (2004) A & L CANADA LABORATORIES INC. Compost management handbook. Available at: https://www.alcanada.com/pdf/Compost_Handbook.pdf. Accessed 1 March 2018

  2. Barrena R, Font X, Gabarrell X, Sánchez A (2014) Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability. Waste Manag 34(7):1109–1116

    Article  Google Scholar 

  3. Bernstad A (2010) Environmental evaluation of solid household waste management – the Augustenborg Ecocity example. Licentiate thesis, Department for Environmental Engineering, Lund University, Lund, Sweden

  4. BiPRO (2013) Country factsheet for Greece, support to member states in improving waste management based on assessment of member states’ performance, Report prepared for the European Commission, DG ENV, May 2013. http://ec.europa.eu/environment/waste/framework/pdf/GR%20factsheet_FINAL.pdf

  5. Cercioglu M (2017) The role of organic soil amendments on soil physical properties and yield of maize (Zea mays L.). Commun Soil Sci Plant Anal 48(6):683–691. https://doi.org/10.1080/00103624.2017.1298787

    Article  CAS  Google Scholar 

  6. Colón J, Mestre-Montserrat M, Puig-Ventosa I, Sánchez A (2013) Performance of baby biodegradable used diapers in the co-composting process with the organic fraction of municipal solid waste. Waste Manag 33:1097–1103

    Article  CAS  Google Scholar 

  7. Comesaña IV, Alves D, Mato S, Romero XM, Varela B (2017) Decentralized composting of organic waste in a European rural region: a case study in Allariz (Galicia, Spain). In: Solid waste management in rural areas. InTech. https://doi.org/10.5772/intechopen.69555

  8. Cuevas J, Seguel O, Ellies A, Dorner J (2006) Efectos de las enmiendas orgánicas sobre las propiedades físicas del suelo con especial referencia a la adición de de lodos urbanos. RC Suelo Nutr Veg 6(2):1–12

    Google Scholar 

  9. Diaz LF, Savage GM (2007a) Factors that affect the process. In: Diaz F, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) L. Compost Science and Technology Elsevier, Amsterdam, pp 49–64

    Google Scholar 

  10. Diaz LF, Savage GM (2007b) Bioremediation. In: Diaz LF, de Bertoldi M, B. W. and S. E (eds) Compost science and technology. Elsevier, Amsterdam, pp 159–176

    Google Scholar 

  11. Dimambro ME, Lillywhite R, Rahn CR (2007) The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Sci Utili 15(4):243–252 ISSN 1065-657X

    Article  CAS  Google Scholar 

  12. EC (2015) Average EU consumer wastes 16% of food; most of which could be avoided. JRC News published on 12 August 2015. Available at: https://ec.europa.eu/jrc/en/news/average-eu-consumer-wastes-16-food-most-which-could-be-avoided

  13. Edjabou ME, Jensen MB, Götze R, Pivnenko K, Petersen C, Scheutz C, Astrup FT (2015) Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation. Waste Manag 36:12–23

    Article  Google Scholar 

  14. EPADYM (2018) Integrated solid waste management system of Western Macedonia. Available at: https://en.epadym.gr/scope_of_works/. Accessed 22 Dec 2018

  15. European Compost Network (ECN) (2018). Treatment of bio-waste in Europe. Available at: https://www.compostnetwork.info/policy/biowaste-in-europe/treatment-bio-waste-europe/. Accessed 14 Jan 2019

  16. Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26:61–69

    Article  CAS  Google Scholar 

  17. Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38(5):311–400

    Article  CAS  Google Scholar 

  18. Gidarakos E (2007) Management and treatment of MSW, Course Notes, Laboratory of toxic and hazardous waste, Technical University of Crete. [original reference in Greek: Γιδαράκος, Ε. (2007) Διαχείριση και Επεξεργασία Αστικών Απορριμμάτων, Σημειώσεις Μαθήματος, Εργαστήριο τοξικών και επικινδύνων αποβλήτων, Πολυτεχνείο Κρήτης]

  19. Giwa AS, Xu H, Wu J, Li Y, Chang F, Zhang X, Jin Z, Huang B, K Wang K (2018) Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: thermal characterization and kinetic studies. J Clean Prod 180:43–49

    Article  CAS  Google Scholar 

  20. Golueke CG (1972) “Composting” a study of process and its principles. Rodate press Emmaus, Pensylvania

    Google Scholar 

  21. Grisso R, Alley M, Holshouser D, Thomason W (2009) Precision farming tools: soil electrical conductivity, Publication 442–508. Virginia Cooperative Extension. College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University

  22. Haug RT (1993) The practical handbook of compost engineering. Lewis Publishers, Boca Raton

    Google Scholar 

  23. Huerta-Pujol O, Soliva M, Giro F, Lopez M (2010) Heavy metal content in rubbish bags used for separate collection of biowaste. Waste Manag 30:1450–1456

    Article  CAS  Google Scholar 

  24. Huerta-Pujol O, Gallart M, Soliva M, Martinez-Farre FX, Lopez M (2011) Effect of collection system on mineral content of biowaste. Resour Conserv Recycl 55:1095–1099

    Article  Google Scholar 

  25. Johnsson, L., Nilsson, S.I. & Jennische, P. (2005). Desk study to assess the feasibility of a draft horizontal standard for electrical conductivity

    Google Scholar 

  26. Kalogirou E, Sakalis A (2016) Overview of the waste management situation and planning in Greece. Waste Manag 6:107–116

    Google Scholar 

  27. Kapetanios EG (1990) Production of soil improvement materials and undertaking of heavy metals that are present in them, using clinoptilolite. Ph.D. Thesis, National Technical University of Athens, Greece. [original reference in Greek: Καπετάνιος, E. (1990) Παραγωγή και αξιολόγηση του compost από απορρίμματα και δέσμευση βαρέων μετάλλων του με χρήση κλινοπτιλόλιθου, Τμήμα Χημικών Μηχανικών, Διδακτορική διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα]

  28. Karkazi A, Skoulaxinou A, Mavropoulos A, Fagogeni E (2003) Solid waste management in the Greek islands. In: Proceedings Sardinia 2003, ninth international waste management and landfill symposium, Cagliari, Italy, 6–10 October 2003

    Google Scholar 

  29. Kazemi K, Zhang B, Lye LM, Cai Q, Cao T (2016) Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting. Waste Manag 58:107–117

    Article  CAS  Google Scholar 

  30. Kirchmann H, Widen P (1994) Separately collected organic household wastes. Swed J Agric Res 24:3–12

    CAS  Google Scholar 

  31. Krogmann U, Korner I, Diaz LF (2011) Composting: technology. In: Christensen TH (ed) Solid waste technology & management, vol 2. Wiley, Chichester, pp 533–568

    Google Scholar 

  32. Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan Publishing for a sustainable future, London

    Google Scholar 

  33. Liang C, Das KC, McClendon RW (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86(2):131–137

    Article  CAS  Google Scholar 

  34. López M, Soliva M, Martínez-Farré FX, Fernández M, Huerta-Pujol O (2010) Evaluation of MSW organic fraction for composting: separate collection or mechanical sorting. Resour Conserv Recycl 54(4):222–228

    Article  Google Scholar 

  35. Malamis D, Moustakas K, Bourka A, Valta K, Papadaskalopoulou C, Panaretou V, Skiadi O, Sotiropoulos A (2015) Compositional analysis of food waste from study sites in Greek municipalities. Waste Biomass Valoriz 6(5):637–646

    Article  Google Scholar 

  36. Malamis D, Bourka A, Stamatopoulou Ε, Moustakas K, Skiadi O, Loizidou M (2017) Study and assessment of segregated biowaste composting: the case study of Attica municipalities. J Environ Manag 203:664–669. https://doi.org/10.1016/j.jenvman.2016.09.070

    Article  CAS  Google Scholar 

  37. Manios BI (1979) Investigation of the feasibility to produce compost from extracted pomace, PhD Thesis, Agricultural University of Athens [original reference in Greek: Μανιός, Β. Ι. (1979) Διερεύνηση δυνατότητας παρασκευής φυτοχώματος από εκχυλισμένη ελαιοπυρήνα, Διδακτορική διατριβή, Ανώτατη Γεωπονική Σχολή Αθηνών, Αθήνα]

  38. Manios T (2004) The composting potential of different organic solid wastes: experience from the island of Crete. Environ Int 29(8):1079–1089

    Article  CAS  Google Scholar 

  39. Margaritis M (2013) Utilization of the biodegradable waste fraction using a prototype composting system. Doctoral thesis, School of Chemical Engineering, National Technical University [original reference in Greek: Μαργαρίτης, Μ. (2013) Αξιοποίηση του βιοαποδομήσιμου κλάσματος απορριμμάτων με χρήση πρότυπου συστήματος κομποστοποίησης. Διδακτορική διατριβή, Σχολή Χημικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο]

  40. Margesin R, Cimadom J, Schinner F (2006) Biological activity during composting of sewage sludge at low temperatures. Int Biodeterior Biodegrad 57(2):88–92

    Article  CAS  Google Scholar 

  41. Ministry of Environment and Energy of Greece (MoEE GR) (2015) National Waste Management Plan and National Strategic Waste Prevention Plan. Ministerial Act 49/15.12.2015 (Official Gazette 174A). Available at: http://www.ypeka.gr/LinkClick.aspx?fileticket=8rKEKVFO8G0%3d&tabid=238&language=el-GR

  42. Ministry of Environment, Energy and Climate Change of Greece (MEECC GR) (2013) Deliverable 2: existing status on waste management and evaluation of the current situation, Report prepared by Epsilon SA – I. Kougianos & Associates Ltd, Delphi Engineering – Oikosfairiki. Available at: http://www.ypeka.gr/Default. aspx?tabid=238&language=el-GR. Accessed 26 Feb 2018

  43. Nakasaki K, Yaguchi H, Sasaki M, Kubota H (1993) Effects of pH control on composting of garbage. Waste Manag Res 11:117–125

    Article  CAS  Google Scholar 

  44. Nova Scotia (2008) Environment compost maturity study, Nova Scotia. Available at: http://www.gov.ns.ca/nse/waste/docs/Compost.Maturity.Study.Report.pdf. Accessed 17 Nov 2017

  45. Omonode R, Vyn T (2006) Spatial dependence and relationship of electrical conductivity to soil organic matter, phosphorus, and potassium. Soil Sci 171(3):223–238

    Article  CAS  Google Scholar 

  46. Panaretou V, Malamis D, Papadaskalopoulou C, Sotiropoulos A, Valta K, Plevri A, Margaritis M, Moustakas K, Loizidou M (2016) Implementation and evaluation of an integrated management scheme for MSW in selected communities in Tinos Island, Greece. Waste Biomass Valoriz 8:1–20. https://doi.org/10.1007/s12649-016-9632-z

    CAS  Article  Google Scholar 

  47. Pereira RF, Cardoso EJBN, Oliveira FC, Estrada-Bonilla GA, Cerri CEP (2018) A novel way of assessing C dynamics during urban organic waste composting and greenhouse gas emissions in tropical region. Bioresour Technol Rep 3:35–42. https://doi.org/10.1016/j.biteb.2018.02.002

    Article  Google Scholar 

  48. Poincelot RP (1974) A scientific examination of the principles and practice of composting. Compost Sci 15(3):24–31

    CAS  Google Scholar 

  49. Rodrigues J, Oliveira V, Lopes P, Dias-Ferreira C (2015) Door-to-door collection of food and kitchen waste in city centers under the framework of multimunicipal waste management systems in Portugal – the case study of Aveiro. Waste Biomass Valoriz 6:647–656

    Article  CAS  Google Scholar 

  50. Saveyn H, Eder P (2014) End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Hrsg: European Commission; Joint Research Centre (JRC) Scientific and policy reports (2014). http://jrc.es/EURdoc/JRC87124.pdf. Accessed 29 Nov 2017

  51. Sepúlveda-Varas A, Inostroza C, Encina-Montoya F (2011) Effects of the incorporation of biosolids on soil quality: temporal evolution in a degraded inceptisol (typic endoaquepts). J Soil Sci Plant Nutr 11(3):33–44 Available at: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162011000300003. Accessed 13 Oct 2018

    Google Scholar 

  52. Shammas NK, Wang LK (2007) Biosolids composting. In: Wang LK, Shammas NK, Hung YT (eds) Handbook of environmental engineering: biosolids treatment process, vol 6. Humana Press, pp 645–685

  53. Shiralipour A, Mc Connell W, Smith WH (1992) Physical and chemical properties of soil as affected by municipal solid waste compost application. Biomass Bioenergy 3:195–211

    Article  Google Scholar 

  54. Skordilis A (2004) Modelling of integrated solid waste management systems in an island. Resour Conserv Recycl 41(3):243–254. https://doi.org/10.1016/j.resconrec.2003.10.007

    Article  Google Scholar 

  55. Smith RS (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156

    Article  CAS  Google Scholar 

  56. Soliva M, López M, Huerta O (2008) Past, present and future of compost. In: II international conference on soil and compost eco-biology, 26–29 November. Tenerife, Spain, p 2008

    Google Scholar 

  57. Stentiford EI (1996) Composting control: principles and practice. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting, part 1, Glasgow, pp 49–59

  58. Vakalis S, Sotiropoulos A, Moustakas K, Malamis D, Vekkos K, Baratieri M (2016) Thermochemical valorization and characterization of household bio-waste. J Environ Manag 203:648–654. https://doi.org/10.1016/j.jenvman.2016.04.017

    Article  CAS  Google Scholar 

  59. Vanham D, Bouraoui F, Leip A, Grizzetti B, Bidoglio G (2015) Lost water and nitrogen resources due to EU consumer food waste. Environ Res Lett 10:084008

    Article  CAS  Google Scholar 

  60. Vaz JM, Ferreira JS, Dias-Ferreira C (2015) Biowaste separate collection and composting in a Small Island Developing State: the case study of São Tomé and Principe, West Africa. Waste Manag Res 33(12):1132–1138

    Article  Google Scholar 

  61. WASTE-C-CONTROL (2011) Deliverable of action 1: database of waste management technologies, LIFE WASTE-C-CONTROL – waste management options for greenhouse gases emissions control, LIFE09 ENV/GR/000294. Available at: http://www.epem.gr/waste-c-control/database/default.htm. Accessed 05 Sept 2017

  62. Willmott L, Graci S (2012) Solid waste management in small island destinations: a case study of Gili Trawangan, Indonesia. Revue de recherche en tourisme, Téoros, pp 71–76

    Google Scholar 

  63. WRAP (2012) Household food and drink in the United Kingdom. Final report. Report prepared by WRAP. Banbury

  64. Zorpas AA (1999) Development of a methodology for the composting of sewage sludge using zeolites. Ph.D. thesis, National Technical University of Athens, Greece. [original reference in Greek: Ζορπάς, Α. (1999) Ανάπτυξη Μεθοδολογίας για την Κομποστοποίηση της Ιλύος με Χρήση Ζεόλιθων, Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα]

  65. Zorpas AA, Arapoglou D, Panagiotis K (2003) Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production. Waste Manag 23:27–35

    Article  CAS  Google Scholar 

  66. Zorpas AA, Lasaridi K, Voukkali I, Loizia P, Chroni C (2015) Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans. Waste Manag 38(4):3–11. ISSN 0956-053X. https://doi.org/10.1016/j.wasman.2015.01.030

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Panaretou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panaretou, V., Vakalis, S., Ntolka, A. et al. Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility. Environ Sci Pollut Res 26, 20232–20247 (2019). https://doi.org/10.1007/s11356-019-05307-7

Download citation

Keywords

  • Waste framework directive
  • On-island composting
  • Integrated solid waste management
  • Organic fraction of municipal waste
  • Source separation
  • Biowaste
  • Carbon sequestration
  • Material characterization