Environmental Science and Pollution Research

, Volume 26, Issue 20, pp 20232–20247 | Cite as

Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility

  • Vasiliki PanaretouEmail author
  • Stergios Vakalis
  • Aggeliki Ntolka
  • Aggelos Sotiropoulos
  • Konstantinos Moustakas
  • Dimitris Malamis
  • Maria Loizidou
Research Article


This article presents the pilot experience of an integrated biowaste management system developed in Tinos island, Greece, which promoted source separation and decentralized composting in a prototype unit. This system was introduced as a new-to-the-area of implementation and innovation, since landfilling of mixed municipal solid waste has been the common practice in Tinos island, as in many other areas of insular and mainland Greece. The biowaste management system was implemented through a bring scheme that aimed at motivating the public to separate at source the organic fraction of MSW. The system was monitored on an input-output basis of critical parameters used to assess the purity of separately collected biowaste, the treatment efficiency of the prototype unit, the quality characteristics of compost produced, and public’s awareness and participation. Results showed that biowaste source separation was practiced effectively by citizens, giving high-purity feed (> 98%). Compost samples were examined in comparison with the proposed EU End-of-Waste (EoW) quality criteria and fulfilled the requirements set. More specifically, the average values of compost samples regarding heavy metal content were 72% lower than the EoW limit value for Cd, 43% lower for Ni, 38% lower for Pd, 24% lower for Cu, and 36% lower for Zn. Examined composts also met the EoW criteria for phytotoxicity and pathogenic or parasitic microorganisms, while they showed an approx. 15% decrease in initial organic matter content. Moreover, this study analyzed the carbon balances and the degree that composting can sequestrate carbon. Overall, this study demonstrated that the development and operation of on-island, decentralized composting, when properly practiced, is a sustainable option in order for islands and remote areas to adopt a closed loop approach to the biowaste management problem, in line with the circular economy principles.


Waste framework directive On-island composting Integrated solid waste management Organic fraction of municipal waste Source separation Biowaste Carbon sequestration Material characterization 



  1. AL (2004) A & L CANADA LABORATORIES INC. Compost management handbook. Available at: Accessed 1 March 2018
  2. Barrena R, Font X, Gabarrell X, Sánchez A (2014) Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability. Waste Manag 34(7):1109–1116CrossRefGoogle Scholar
  3. Bernstad A (2010) Environmental evaluation of solid household waste management – the Augustenborg Ecocity example. Licentiate thesis, Department for Environmental Engineering, Lund University, Lund, SwedenGoogle Scholar
  4. BiPRO (2013) Country factsheet for Greece, support to member states in improving waste management based on assessment of member states’ performance, Report prepared for the European Commission, DG ENV, May 2013. Scholar
  5. Cercioglu M (2017) The role of organic soil amendments on soil physical properties and yield of maize (Zea mays L.). Commun Soil Sci Plant Anal 48(6):683–691. CrossRefGoogle Scholar
  6. Colón J, Mestre-Montserrat M, Puig-Ventosa I, Sánchez A (2013) Performance of baby biodegradable used diapers in the co-composting process with the organic fraction of municipal solid waste. Waste Manag 33:1097–1103CrossRefGoogle Scholar
  7. Comesaña IV, Alves D, Mato S, Romero XM, Varela B (2017) Decentralized composting of organic waste in a European rural region: a case study in Allariz (Galicia, Spain). In: Solid waste management in rural areas. InTech.
  8. Cuevas J, Seguel O, Ellies A, Dorner J (2006) Efectos de las enmiendas orgánicas sobre las propiedades físicas del suelo con especial referencia a la adición de de lodos urbanos. RC Suelo Nutr Veg 6(2):1–12Google Scholar
  9. Diaz LF, Savage GM (2007a) Factors that affect the process. In: Diaz F, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) L. Compost Science and Technology Elsevier, Amsterdam, pp 49–64Google Scholar
  10. Diaz LF, Savage GM (2007b) Bioremediation. In: Diaz LF, de Bertoldi M, B. W. and S. E (eds) Compost science and technology. Elsevier, Amsterdam, pp 159–176Google Scholar
  11. Dimambro ME, Lillywhite R, Rahn CR (2007) The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Sci Utili 15(4):243–252 ISSN 1065-657XCrossRefGoogle Scholar
  12. EC (2015) Average EU consumer wastes 16% of food; most of which could be avoided. JRC News published on 12 August 2015. Available at:
  13. Edjabou ME, Jensen MB, Götze R, Pivnenko K, Petersen C, Scheutz C, Astrup FT (2015) Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation. Waste Manag 36:12–23CrossRefGoogle Scholar
  14. EPADYM (2018) Integrated solid waste management system of Western Macedonia. Available at: Accessed 22 Dec 2018
  15. European Compost Network (ECN) (2018). Treatment of bio-waste in Europe. Available at: Accessed 14 Jan 2019
  16. Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26:61–69CrossRefGoogle Scholar
  17. Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38(5):311–400CrossRefGoogle Scholar
  18. Gidarakos E (2007) Management and treatment of MSW, Course Notes, Laboratory of toxic and hazardous waste, Technical University of Crete. [original reference in Greek: Γιδαράκος, Ε. (2007) Διαχείριση και Επεξεργασία Αστικών Απορριμμάτων, Σημειώσεις Μαθήματος, Εργαστήριο τοξικών και επικινδύνων αποβλήτων, Πολυτεχνείο Κρήτης]Google Scholar
  19. Giwa AS, Xu H, Wu J, Li Y, Chang F, Zhang X, Jin Z, Huang B, K Wang K (2018) Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: thermal characterization and kinetic studies. J Clean Prod 180:43–49CrossRefGoogle Scholar
  20. Golueke CG (1972) “Composting” a study of process and its principles. Rodate press Emmaus, PensylvaniaGoogle Scholar
  21. Grisso R, Alley M, Holshouser D, Thomason W (2009) Precision farming tools: soil electrical conductivity, Publication 442–508. Virginia Cooperative Extension. College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  22. Haug RT (1993) The practical handbook of compost engineering. Lewis Publishers, Boca RatonGoogle Scholar
  23. Huerta-Pujol O, Soliva M, Giro F, Lopez M (2010) Heavy metal content in rubbish bags used for separate collection of biowaste. Waste Manag 30:1450–1456CrossRefGoogle Scholar
  24. Huerta-Pujol O, Gallart M, Soliva M, Martinez-Farre FX, Lopez M (2011) Effect of collection system on mineral content of biowaste. Resour Conserv Recycl 55:1095–1099CrossRefGoogle Scholar
  25. Johnsson, L., Nilsson, S.I. & Jennische, P. (2005). Desk study to assess the feasibility of a draft horizontal standard for electrical conductivityGoogle Scholar
  26. Kalogirou E, Sakalis A (2016) Overview of the waste management situation and planning in Greece. Waste Manag 6:107–116Google Scholar
  27. Kapetanios EG (1990) Production of soil improvement materials and undertaking of heavy metals that are present in them, using clinoptilolite. Ph.D. Thesis, National Technical University of Athens, Greece. [original reference in Greek: Καπετάνιος, E. (1990) Παραγωγή και αξιολόγηση του compost από απορρίμματα και δέσμευση βαρέων μετάλλων του με χρήση κλινοπτιλόλιθου, Τμήμα Χημικών Μηχανικών, Διδακτορική διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα]Google Scholar
  28. Karkazi A, Skoulaxinou A, Mavropoulos A, Fagogeni E (2003) Solid waste management in the Greek islands. In: Proceedings Sardinia 2003, ninth international waste management and landfill symposium, Cagliari, Italy, 6–10 October 2003Google Scholar
  29. Kazemi K, Zhang B, Lye LM, Cai Q, Cao T (2016) Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting. Waste Manag 58:107–117CrossRefGoogle Scholar
  30. Kirchmann H, Widen P (1994) Separately collected organic household wastes. Swed J Agric Res 24:3–12Google Scholar
  31. Krogmann U, Korner I, Diaz LF (2011) Composting: technology. In: Christensen TH (ed) Solid waste technology & management, vol 2. Wiley, Chichester, pp 533–568Google Scholar
  32. Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan Publishing for a sustainable future, LondonGoogle Scholar
  33. Liang C, Das KC, McClendon RW (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86(2):131–137CrossRefGoogle Scholar
  34. López M, Soliva M, Martínez-Farré FX, Fernández M, Huerta-Pujol O (2010) Evaluation of MSW organic fraction for composting: separate collection or mechanical sorting. Resour Conserv Recycl 54(4):222–228CrossRefGoogle Scholar
  35. Malamis D, Moustakas K, Bourka A, Valta K, Papadaskalopoulou C, Panaretou V, Skiadi O, Sotiropoulos A (2015) Compositional analysis of food waste from study sites in Greek municipalities. Waste Biomass Valoriz 6(5):637–646CrossRefGoogle Scholar
  36. Malamis D, Bourka A, Stamatopoulou Ε, Moustakas K, Skiadi O, Loizidou M (2017) Study and assessment of segregated biowaste composting: the case study of Attica municipalities. J Environ Manag 203:664–669. CrossRefGoogle Scholar
  37. Manios BI (1979) Investigation of the feasibility to produce compost from extracted pomace, PhD Thesis, Agricultural University of Athens [original reference in Greek: Μανιός, Β. Ι. (1979) Διερεύνηση δυνατότητας παρασκευής φυτοχώματος από εκχυλισμένη ελαιοπυρήνα, Διδακτορική διατριβή, Ανώτατη Γεωπονική Σχολή Αθηνών, Αθήνα]Google Scholar
  38. Manios T (2004) The composting potential of different organic solid wastes: experience from the island of Crete. Environ Int 29(8):1079–1089CrossRefGoogle Scholar
  39. Margaritis M (2013) Utilization of the biodegradable waste fraction using a prototype composting system. Doctoral thesis, School of Chemical Engineering, National Technical University [original reference in Greek: Μαργαρίτης, Μ. (2013) Αξιοποίηση του βιοαποδομήσιμου κλάσματος απορριμμάτων με χρήση πρότυπου συστήματος κομποστοποίησης. Διδακτορική διατριβή, Σχολή Χημικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο]Google Scholar
  40. Margesin R, Cimadom J, Schinner F (2006) Biological activity during composting of sewage sludge at low temperatures. Int Biodeterior Biodegrad 57(2):88–92CrossRefGoogle Scholar
  41. Ministry of Environment and Energy of Greece (MoEE GR) (2015) National Waste Management Plan and National Strategic Waste Prevention Plan. Ministerial Act 49/15.12.2015 (Official Gazette 174A). Available at:
  42. Ministry of Environment, Energy and Climate Change of Greece (MEECC GR) (2013) Deliverable 2: existing status on waste management and evaluation of the current situation, Report prepared by Epsilon SA – I. Kougianos & Associates Ltd, Delphi Engineering – Oikosfairiki. Available at: aspx?tabid=238&language=el-GR. Accessed 26 Feb 2018
  43. Nakasaki K, Yaguchi H, Sasaki M, Kubota H (1993) Effects of pH control on composting of garbage. Waste Manag Res 11:117–125CrossRefGoogle Scholar
  44. Nova Scotia (2008) Environment compost maturity study, Nova Scotia. Available at: Accessed 17 Nov 2017
  45. Omonode R, Vyn T (2006) Spatial dependence and relationship of electrical conductivity to soil organic matter, phosphorus, and potassium. Soil Sci 171(3):223–238CrossRefGoogle Scholar
  46. Panaretou V, Malamis D, Papadaskalopoulou C, Sotiropoulos A, Valta K, Plevri A, Margaritis M, Moustakas K, Loizidou M (2016) Implementation and evaluation of an integrated management scheme for MSW in selected communities in Tinos Island, Greece. Waste Biomass Valoriz 8:1–20. CrossRefGoogle Scholar
  47. Pereira RF, Cardoso EJBN, Oliveira FC, Estrada-Bonilla GA, Cerri CEP (2018) A novel way of assessing C dynamics during urban organic waste composting and greenhouse gas emissions in tropical region. Bioresour Technol Rep 3:35–42. CrossRefGoogle Scholar
  48. Poincelot RP (1974) A scientific examination of the principles and practice of composting. Compost Sci 15(3):24–31Google Scholar
  49. Rodrigues J, Oliveira V, Lopes P, Dias-Ferreira C (2015) Door-to-door collection of food and kitchen waste in city centers under the framework of multimunicipal waste management systems in Portugal – the case study of Aveiro. Waste Biomass Valoriz 6:647–656CrossRefGoogle Scholar
  50. Saveyn H, Eder P (2014) End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Hrsg: European Commission; Joint Research Centre (JRC) Scientific and policy reports (2014). Accessed 29 Nov 2017
  51. Sepúlveda-Varas A, Inostroza C, Encina-Montoya F (2011) Effects of the incorporation of biosolids on soil quality: temporal evolution in a degraded inceptisol (typic endoaquepts). J Soil Sci Plant Nutr 11(3):33–44 Available at: Accessed 13 Oct 2018Google Scholar
  52. Shammas NK, Wang LK (2007) Biosolids composting. In: Wang LK, Shammas NK, Hung YT (eds) Handbook of environmental engineering: biosolids treatment process, vol 6. Humana Press, pp 645–685Google Scholar
  53. Shiralipour A, Mc Connell W, Smith WH (1992) Physical and chemical properties of soil as affected by municipal solid waste compost application. Biomass Bioenergy 3:195–211CrossRefGoogle Scholar
  54. Skordilis A (2004) Modelling of integrated solid waste management systems in an island. Resour Conserv Recycl 41(3):243–254. CrossRefGoogle Scholar
  55. Smith RS (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156CrossRefGoogle Scholar
  56. Soliva M, López M, Huerta O (2008) Past, present and future of compost. In: II international conference on soil and compost eco-biology, 26–29 November. Tenerife, Spain, p 2008Google Scholar
  57. Stentiford EI (1996) Composting control: principles and practice. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting, part 1, Glasgow, pp 49–59Google Scholar
  58. Vakalis S, Sotiropoulos A, Moustakas K, Malamis D, Vekkos K, Baratieri M (2016) Thermochemical valorization and characterization of household bio-waste. J Environ Manag 203:648–654. CrossRefGoogle Scholar
  59. Vanham D, Bouraoui F, Leip A, Grizzetti B, Bidoglio G (2015) Lost water and nitrogen resources due to EU consumer food waste. Environ Res Lett 10:084008CrossRefGoogle Scholar
  60. Vaz JM, Ferreira JS, Dias-Ferreira C (2015) Biowaste separate collection and composting in a Small Island Developing State: the case study of São Tomé and Principe, West Africa. Waste Manag Res 33(12):1132–1138CrossRefGoogle Scholar
  61. WASTE-C-CONTROL (2011) Deliverable of action 1: database of waste management technologies, LIFE WASTE-C-CONTROL – waste management options for greenhouse gases emissions control, LIFE09 ENV/GR/000294. Available at: Accessed 05 Sept 2017
  62. Willmott L, Graci S (2012) Solid waste management in small island destinations: a case study of Gili Trawangan, Indonesia. Revue de recherche en tourisme, Téoros, pp 71–76Google Scholar
  63. WRAP (2012) Household food and drink in the United Kingdom. Final report. Report prepared by WRAP. BanburyGoogle Scholar
  64. Zorpas AA (1999) Development of a methodology for the composting of sewage sludge using zeolites. Ph.D. thesis, National Technical University of Athens, Greece. [original reference in Greek: Ζορπάς, Α. (1999) Ανάπτυξη Μεθοδολογίας για την Κομποστοποίηση της Ιλύος με Χρήση Ζεόλιθων, Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα]Google Scholar
  65. Zorpas AA, Arapoglou D, Panagiotis K (2003) Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production. Waste Manag 23:27–35CrossRefGoogle Scholar
  66. Zorpas AA, Lasaridi K, Voukkali I, Loizia P, Chroni C (2015) Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans. Waste Manag 38(4):3–11. ISSN 0956-053X. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unit of Environmental Science and Technology, School of Chemical EngineeringNational Technical University of AthensZografouGreece
  2. 2.Faculty of Science and Technology, Technical Physics GroupFree University of BolzanoBolzanoItaly
  3. 3.Green FundKifisiaGreece

Personalised recommendations